首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Sn-20In-2.8Ag solder alloy is a potential lead-free solder for replacing the traditional Sn-Pb solders. In this study, the mechanical properties of the bulk material are reported by tensile test at various strain rates and temperatures. The Sn-20In-2.8Ag solder possessed a solidus and liquidus between 170.8°C and 195.5°C. The ultimate tensile strength (UTS) and elongation were 59.3 MPa and 50.2% at a strain rate of 10−3 s−1 at room temperature. Moreover, the UTS of this alloy decreased, but its elongation increased, with increasing testing temperature. Stress exponents of Sn-20In-2.8Ag alloy varied from 6.5 at room temperature to 4 at 100°C, and the activation energy for creep was 51.0 kJ/mol at the higher temperature range from 50°C to 100°C. The typical intergranular creep fracture mode was observed in Sn-20In-2.8Ag solder during tensile creep deformation.  相似文献   

2.
In this study, the different electromigration (EM) behaviors of eutectic Sn-Bi solder in the solid and molten states were clarified using line-type Cu/Sn-Bi/Cu solder joints. When the eutectic Sn-Bi solder was in the solid state during the EM test, a Bi-rich layer formed at the anode side while a Sn-rich band formed at the cathode side, and the intermetallic compound (IMC) at the cathode side was thicker than that at the anode side. The growth of the Bi-rich layer exhibited a linear dependence on the time of stressing. While the actual temperature of the solder joint increased to 140°C and the solder was in a molten state or partially molten state, two separate Bi-rich layers formed at the anode side and a great many Cu6Sn5 IMC precipitates formed between the two Bi-rich layers. Also, the IMC layer at the cathode side was thinner than that at the anode side. With a current-crowding-reduced structure, the products of diffusivity and effective charge number of Bi in the eutectic Cu/Sn-Bi/Cu solder joints stressed with current density of 5 × 103 A/cm2 at 35°C, 55°C, and 75°C were calculated.  相似文献   

3.
The effects of surface finishes on the in situ interfacial reaction characteristics of ball grid array (BGA) Sn-3.0Ag-0.5Cu lead-free solder bumps were investigated under annealing and electromigration (EM) test conditions of 130°C to 175°C with 5.0 × 103 A/cm2. During reflow and annealing, (Cu,Ni)6Sn5 intermetallic compound (IMC) formed at the interface of electroless nickel immersion gold (ENIG) finish. In the case of both immersion Sn and organic solderability preservative (OSP) finishes, Cu6Sn5 and Cu3Sn IMCs formed. Overall, the IMC growth velocity of ENIG was much lower than that of the other finishes. The activation energies of total IMCs were found to be 0.52 eV for ENIG, 0.78 eV for immersion Sn, and 0.72 eV for OSP. The ENIG finish appeared to present an effective diffusion barrier between the Cu substrate and the solder, which leads to better EM reliability in comparison with Cu-based pad systems. The failure mechanisms were explored in detail via in situ EM tests.  相似文献   

4.
The effect of Al-trace width on electromigration (EM) in flip-chip solder joints was investigated experimentally. EM tests were performed on eutectic Sn-Ag solders with 40-μm- and 100-μm-wide Al traces. Under the same stressing conditions (0.5 A at 165°C), the failure time was 44.1 h for solder joints with 40-μm-wide traces and 250.1 h for solder joints with 100-μm-wide traces. The Al-trace width influenced both the current crowding and the Joule heating effects. Thus, both effects are responsible for the significant difference in failure time. Finite-element analysis was used to examine the current crowding effect in solder bumps with Al traces of the two different widths. The results showed that the current crowding effect was slightly higher in joints with 40-μm-wide traces. In addition, the temperature coefficient was used to measure the real temperatures in the solder bumps during EM. The results indicated that the width of the Al traces had a substantial influence on the Joule heating effect. The measured temperature in the solder bump was 218.2°C and 172.2°C for the bump with 40-μm- and 100-μm-wide Al traces, respectively. This difference in the Joule heating effect plays a crucial role in causing the difference in the failure time of solder joints with the two different widths.  相似文献   

5.
Heat sink very-thin quad flat package no-leads (HVQFN) packages soldered with Sn-3.8Ag-0.7Cu on metallized laminate substrates have been put to thermal aging. Temperatures from 140°C to 200°C for times up to 30 weeks were applied. The solder joint microstructure develops intermetallic compound layers and voids within the solder. Due to this, the mechanical reliability of the HVQFN inner lead solder joints is degraded. The intermetallic layers are of the type (Cu, Y)6Sn5, with Y=Ni, Au or Ni+Au, as well as Cu3Sn, and follow a power law with aging time: X=C·tn, where n=0.4 to 1.9 depending on temperature. The voids within the solder are attributed to Sn depletion of the solder in favor of the growth of (Cu,Ni)6Sn5. They are more pronounced the less the solder volume is in proportion to the intermetallic diffusion area. The amount of voids is quantified as a percentage of the residual solder. The time to reach the failure criterion of 50%, i.e., t50%, is related to the absolute temperature according to an Arrhenius equation with an activation energy Ea=0.95 eV. This equation is used for determination of the maximum allowable temperature at a certain required operating lifetime.  相似文献   

6.
Solid state intermetallic compound layer growth was examined following ther-mal aging of the 58Bi-42Sn/Cu couple for a temperature range of 55 to 120°C and time periods of from 1 to 400 days. The intermetallic compound layer was comprised of sublayers that included the traditional Cu6Sn5 stoichiometry as well as one or more complex Cu-Sn-Bi chemistries. The number of sublayers increased with aging temperature and time. Time-dependent layer thickness computations based upon the empirical expression, Atn + B, revealed a time exponent, n, that decreased with increasing temperature from a maximum of 0.551 at 70°C to 0.417 at 120°C. The apparent activation energy for growth (at 100 days) was 55± 7 kJ/mol. The Bi-Sn/Cu data, together with that from the other solder/copper systems, suggested that at a given homologous temperature, the quantity of Sn in the solder field determines the intermetallic compound layer thickness as a function of time.  相似文献   

7.
The implantation of sodium ions with an energy of 300 keV is carried out into high-resistivity p-Si. The annealing of defects at T ann = 350–450°C and related activation of atoms (the latter occurs at the “tail” of atom distribution) are described by a first-order reaction. At T ann = 450–525°C and irrespective of the ion dose, negative annealing is observed; this annealing is accompanied by an appreciable increase in the surface resistance ρ s . According to estimations, the activation energy of this process amounts to ~2 eV. It is our opinion that the annealing is related to the precipitation of sodium donor atoms, which occurs at a depth exceeding by two–three times the projected range R p of ions. The annealing of defects at T ann = 525–700°C, which leads to a further decrease in ρ s , features an activation energy of ~2.1 eV. The hypothesis that the “tail” in the profiles of sodium atoms measured by secondary-ion mass spectroscopy is due to the diffusion of these atoms from the walls of the crater to its center is verified. It is shown that this process is not implemented since the profiles of sodium atoms measured at room temperature do not differ from those measured at–140°C.  相似文献   

8.
Wetting reactions between eutectic AuSn solder and Au foil have been studied. During the reflow process, Au foil dissolution occurred at the interface of AuSn/Au, which increases with temperature and time. The activation energy for Au dissolution in molten AuSn solder is determined to be 41.7 kJ/mol. Au5Sn is the dominant interfacial compound phase formed at the interface. The activation energy for the growth of the interfacial Au5Sn phase layer is 54.3 kJ/mol over the temperature range 360–440°C. The best wettability of molten AuSn solder balls on Au foils occurred at 390°C (wetting angle is about 25°). Above 390°C, the higher solder oxidation rate retarded the wetting of the molten AuSn solder.  相似文献   

9.
The research reported here concerns the contribution of transformation- induced plasticity (TRIP) to the shear deformation of Sn-x wt.%In solders with Cu or Ni metallization, where the In content (x) ranges from 9 wt.% to 15 wt.%. In this concentration range the high-temperature γ-phase (hexagonal structure) transforms to the low-temperature β-phase (β-Sn structure) on cooling, and the transformation can be martensitic. The results show that Sn-9In and Sn-11In solder joints do exhibit TRIP that significantly enhances their ductility when tested at temperatures between the deformation-induced martensite temperature (M d) and the stress-induced martensite temperature (M y). For Sn-9In, M d ≈ 105°C, and the TRIP effect is optimal near M y ≈ 80°C, where the total elongation reaches ~100% when the substrate metallization is Cu. The TRIP elongation is less spectacular with Ni metallization because of weakness at the solder–substrate interface. Sn-11 wt.%In joints also show extensive TRIP effect, with an M d temperature near 60°C, and an M y of 35°C or less. The total elongation of 11 wt.% In joints on Cu reaches 350% at 35°C. Sn-15 wt.%In joints with Cu metallization also have excellent ductility at low temperature, with total elongation of ~50% at 35°C. In this case, however, the excellent ductility is due to the fine-grained, two-phase microstructure of the solder rather than any TRIP effect.  相似文献   

10.
The diffusion of phosphorus in CdTe was measured as a function of anneal time and temperature in the temperature range 600–900°C. The diffusion anneals were carried out in evacuated silica capsules mainly with traces of radioactive phosphorus in the capsule along with sufficient cadmium metal to maintain a saturated vapor pressure over the CdTe slice throughout each anneal. The concentration profiles were measured using a radiotracer sectioning technique. Diffusion anneals were carried out also using other conditions, including some with excess tellurium in the capsule in place of the cadmium. The diffusion profiles were single component. The standard erfc function gave satisfactory fits to the profiles which were Fickian in nature except for short anneal times at intermediate temperatures. When the diffusivity was plotted on an Arrhenius graph, a straight line was obtained giving an activation energy of 2.0 eV. The surface concentration at each temperature was independent of time and varied in value between 1.5×1016 cm−3 at 600°C to 1×1018 cm−3 at 900°C. When the results were plotted on an Arrhenius graph, the results gave a straight line with an activation energy of 1.3 eV.  相似文献   

11.
Study of wetting reaction between eutectic AuSn and Au foil   总被引:1,自引:0,他引:1  
Wetting reactions between eutectic AuSn solder and Au foil have been studied. During the reflow process, Au foil dissolution occurred at the interface of AuSn/Au, which increases with temperature and time. The activation energy for Au dissolution in molten AuSn solder is determined to be 41.7 kJ/mol. Au5Sn is the dominant interfacial compound phase formed at the interface. The activation energy for the growth of interfacial Au5Sn phase layer is obtained to be 54.3 kJ/mol over the temperature range 360–440°C. The best wettability of molten AuSn solder balls on Au foils occurred at 390°C (wetting angle is about 25°). Above 390°C, the higher solder oxidation rate retarded the wetting of the molten AuSn solder.  相似文献   

12.
Electromigration (EM) behavior of eutectic Sn-Bi modified with cage-type polyhedral oligomeric silsesquioxane (POSS) trisilanol was investigated. A direct current (DC) was applied to solder joints newly designed for uniform current distribution throughout the joint. For this study, a current density of 104 A/cm2 was applied at 25°C and 50°C. The evolution of surface and interior microstructure due to current stressing was observed periodically using optical and scanning electron microscopy. The results revealed that the EM behavior was retarded significantly in solder joints with the addition of POSS trisilanol. Different from eutectic Sn-Bi solder joints, no continuous hillocks formed at the anode side and no cracks occurred at the cathode side in solder joints modified with POSS trisilanol even after 336 h of current stressing at 25°C. In addition, the accumulation of Bi/Sn phases at regions near the anode/cathode was also effectively limited. Joints stressed at 50°C also exhibited similar behavior. It is postulated that POSS trisilanol near the phase boundary provided significant restriction to the mass transport due to DC current stressing.  相似文献   

13.
The forward-pulse isothermal current–voltage characteristics of 4H-SiC junction barrier Schottky rectifiers (JBSs) with a nominal blocking voltage of 1700 V are measured in the temperature range from–80 to +90°C (193–363 K) up to current densities j of ~5600 A/cm2 at–80°C and 3000 A/cm2 at +90°C. In these measurements, the overheating of the structures relative to the ambient temperature, ΔT, did not exceed several degrees. At higher current densities, the effective injection of minority carriers (holes) into the base of the structures is observed, which is accompanied by the appearance of an S-type differential resistance. The pulsed isothermal current–voltage characteristics are also measured at a temperature of 77 K.  相似文献   

14.
Although conduction in polyimides at elevated temperatures has been widely reported, measurements at ordinary device temperatures have been less well documented. Quantitatively reproducible low field conduction measurements on two device-grade polyimides (PMDA-ODA, BTDA-ODA/MPDA) in the temperature range of 20–350° C and under dry conditions are reported. Aluminum—polyimide—aluminum capacitors are prepared by spin coating an aluminized silicon wafer with between two and four coats of polyimide (prebake at 135° C for 10 min between coats). Samples are cured in dry nitrogen at 400° C for 45 min. Final thickness ranged between 3.3 and 6.6 μm. To permit rapid equilibration of moisture between the film and ambient, the upper electrode is patterned into multiple 25 μm stripes with 5 μ spaces for a total area of 5.1 cm2. After a bake-out at 120° C under dry air and subsequent equilibration in a dry ambient at the test temperature, a voltage step is applied to the sample and the current versus time is recorded for 16,000 sec (the charging current). The sample is then shorted, and the discharging current is recorded. Below 100° C, both charging and discharging currents are dominated by a reversible polarization that follows a power law (approximately t−0.8). Isochronal plots of the polarization current reveal a linear dependence on the applied voltage for fields in the range 104–105 V/cm. The polarization current is nearly independent of temperature and is well modeled by the Lewis molecular dipole theory of polarization. Above 150° C, the current is increasingly dominated by a relatively constant transport current, defined as the difference between charging and discharging currents. This current is ohmic over the field range examined, and shows a complex, activated temperature dependence. For PMDA-ODA the transport current has an activation energy (E a ) of 0.5 eV below 175° C and 1.5 eV above that temperature. For BTDA-ODA/MPDA the Ea is 0.6 up to 250° C and 2.1 eV above. This corresponds to a resistivity of 9 × 1018 Ω-@#@ cm at 23° C and 3.5 × 1014 Ω-cm at 200° C for PMDA-ODA and 5 × 1019 Ω-cm at 23° C and 5.6 × 1013 Ω-cm at 300° C for BTDA-ODA/MPDA. This work demonstrates that the low temperature behavior of polyimide cannot be extrapolated from high temperature measurements. Work sponsored in part by E. I. DuPont de Nemours & Co., Inc.  相似文献   

15.
Electron traps in GaAs grown by MBE at temperatures of 200–300°C (LT-GaAs) were studied. Capacitance deep level transient spectroscopy (DLTS) was used to study the Schottky barrier on n-GaAs, whose space-charge region contained a built-in LT-GaAs layer ∼0.1 μm thick. The size of arsenic clusters formed in LT-GaAs on annealing at 580°C depended on the growth temperature. Two new types of electron traps were found in LT-GaAs layers grown at 200°C and containing As clusters 6–8 nm in diameter. The activation energy of thermal electron emission from these traps was 0.47 and 0.59 eV, and their concentration was ∼1017 cm−3, which is comparable with the concentration of As clusters determined by transmission electron microscopy. In LT-GaAs samples that were grown at 300°C and contained no arsenic clusters, the activation energy of traps was 0.61 eV. The interrelation between these electron levels and the system of As clusters and point defects in LT-GaAs is discussed. __________ Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 38, No. 4, 2004, pp. 401–406. Original Russian Text Copyright ? 2004 by Brunkov, Gutkin, Moiseenko, Musikhin, Chaldyshev, Cherkashin, Konnikov, Preobrazhenskii, Putyato, Semyagin.  相似文献   

16.
The real-time microstructural evolution during electromigration of eutectic SnPb solder lines with an edge drift structure was examined using an in-situ scanning electron microscope (SEM) technique. The test temperature and the current density were either 100°C or 50°C and 6 × 104 A/cm2 or 8 × 104 A/cm2, respectively. In-situ microstructural observation of the depleted phases and quantitative analysis of the number of hillock phases made it clear that the dominant migrating element and dominant hillock phase were Sn and Pb at room temperature, respectively, while both dominant migrating element and dominant hillock phase were Pb at 100°C. Such temperature dependence of the dominant hillock phase in the eutectic SnPb solder can be understood by considering the atomic size factors of the metallic solid solutions. We suggest that at high temperature, it is easier for Pb atoms to be injected into the Pb phase (Pb-phase hillocks); while at low temperature, Pb-phase hillocks were squeezed by Sn, which penetrated the Pb phase.  相似文献   

17.
《Solid-state electronics》1987,30(2):227-233
This paper deals with the electrical properties of low-pressure CVD SiO2 deposited at 80°C. The deposition rate is enhanced by UV radiation in the presence of Hg vapor. The photo-enhanced low-pressure chemical-vapor-deposited oxide, known also as “photox,” offers a good quality oxide deposited at temperatures as low as 80°C. The films are deposited in a batch-load “photox” barrel reactor and subsequently annealed at 950°C for 30 min in a conventional hot-wall furnace. Cold-sputtered aluminum-gate guard-ring capacitors are fabricated on the oxide films. High-frequency and quasi-static capacitance measurements indicate the interfacial properties of “photox” are comparable to those of thermal oxide. Fast interface states density are less than 2 × 1010 cm−2 eV−1 and a light negative interfacial charge could just be detected. The dielectric breakdown field is typically 4–5 MV/cm.Deep-depletion transient-capacitance measurements were performed at temperatures between 20 and 100°C to investigate the possible impact of “photox” processing on the generation lifetime. The Hg in particular might be suspected as a heavy-metal contaminant. Typical recovery times observed at 20°C were in the range of 10–15 min. The generation lifetime derived from such measurements ranges from 140 to 200 μs which is comparable to values for control samples made with standard thermal oxide. The magnitude and temperature dependence of the generation lifetime suggest that the same G-R centers are present in both “photox” and thermal oxide devices. The only apparent electrical effect of the Hg vapors used in the deposition process is a small negative fixed interface charge, 2 × 1010cm−2.  相似文献   

18.
A MOCVD technology for growth of InGaAs/GaAs/InGaP laser heterostructures on a modified Epiquip VP-50-RP installation was developed. Mesa stripe laser diodes with threshold current density J th=100–200 A/cm2, internal optical loss αi=1.3–1.7 cm?1, and internal quantum efficiency ηi=60–70% have been fabricated. A CW output optical power of 5 W has been obtained for a single 100-µm-wide aperture mesa stripe laser diode emitting at 1.03 µm. It is shown that use of AlGaAs waveguide layers, which increase the conduction band barrier offset, lowers the temperature sensitivity of laser heterostructures within the temperature range 10–80°C.  相似文献   

19.
Photoreflection spectroscopy is used to study the activation of impurity in InP crystals implanted with 100-keV Be+ ions at a dose of 1013 cm?2 and then subjected to thermal annealing for 10 s. After annealing at temperatures no higher than 400°C, lines characteristic of crystalline InP are not observed in the photoreflection spectrum, which indicates that the crystal lattice has become disordered as a result of the ion implantation. If the annealing temperature is in the range from 400 to 700°C, the lines related to the fundamental transition in InP (1.34 eV) and the transition between the conduction band and the subband, which has split off from the valence band owing to a spin-orbit interaction (1.44 eV), are observed in the spectrum, which indicates that the InP crystal structure is restored. The dopant is activated in samples annealed at 800°C, as indicated by the Franz-Keldysh oscillations observed in the corresponding photoreflection spectra. Free-carrier concentration is determined from the oscillation period and is found to be equal to 2.2 × 1016 cm?3.  相似文献   

20.
p-Si single crystals grown by the Czochralski method were studied; the hole concentration in these crystals was p = 6 × 1013 cm?3. The samples were irradiated with 8-MeV electrons at 300 K and were then annealed isochronously in the temperature range T ann = 100–500°C. The studies were carried out using the Hall method in the temperature range of 77–300 K. It is shown that annealing of divacancies occurs via their transformation into the B s V 2 complexes. This complex introduces the energy level located at E v + 0.22 eV into the band gap and is annealed out in the temperature range of 360–440°C. It is assumed that defects with the level E v + 0.2 eV that anneal out in the temperature range T ann = 340–450°C are multicomponent complexes and contain the atoms of the doping and background impurities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号