首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 210 毫秒
1.
织物疵点检测是织物表面质量控制的关键环节。基于方向梯度直方图(HOG)和低秩分解,提出一种有效的织物疵点检测算法。首先,将织物图像划分为大小相同的图像块,提取每个图像块的HOG特征,并将图像块特征组成特征矩阵,针对特征矩阵构建有效的低秩分解模型,通过方向交替方法(ADM)优化求解,生成低秩阵和稀疏阵;最后采用改进最优阈值分割算法对由稀疏阵生成的显著图进行分割,从而定位出疵点区域。实验结果表明,低秩分解能有效实现织物疵点的快速分离,与已有方法进行对比,本文方法能显著提高复杂织物纹理图像的疵点检测性能。  相似文献   

2.
为提高稀疏表示方法对织物疵点的检测精度,提出了基于稀疏优化的织物疵点检测算法。首先,利用L1范数最小化从待检织物图像中学习出自适应字典库,用该库对织物图像稀疏表示,进而计算出稀疏表示系数矩阵;然后,对系数矩阵进行优化处理,采用字典库及优化系数矩阵对织物图像稀疏重构;最后,将重构图像与待检织物图像相减生成残差图像,用最大熵阈值方法对残差图像分割,定位出疵点区域。实验结果表明,本文算法所重构图像准确表示了正常织物纹理,相比已有检测方法具有较高的疵点检测精度。  相似文献   

3.
针对传统低秩分解法导致的图像信息过度丢失和织物弹性导致的歪斜问题,提出一种基于Beta范数的改进低秩分解检测方法。首先,通过提取织物图的基元特征构造先验信息图。其次,采用Beta范数代替低秩分解中的核范数,并由先验信息图引导低秩分解方法对织物图进行分解,解决了传统低秩分解方法中核范数导致的图像信息过度丢失的问题。进而,提取织物图的方向梯度直方图(HOG)特征构造后验信息图,并将后验信息图和通过低秩分解得到的稀疏分量进行哈达玛乘积获得显著图,解决了织物弹性导致的歪斜问题。最后,利用最优阈值分割得到疵点图。将实验结果与已有的4种方法进行对比,结果表明,该方法可以有效抑制歪斜干扰,且检测时间更短。  相似文献   

4.
阐述了一阶、二阶微分,Canny和基于小波等多种图像边缘检测方法,并对织物疵点图像进行了边缘检测,分析了各种方法在图像边缘检测应用中的优势和缺陷,结果表明,Canny和小波检测算法对织物疵点图像的边缘检测能够得到满意的效果,提供了较好的织物疵点边缘检测的途径。  相似文献   

5.
对织物表面疵点自动识别方法进行了探讨.将信息熵引入图像处理中,先通过最大熵快速迭代算法对织物疵点区域进行分割,把疵点图像分为背景和目标两部分;然后找出疵点区域的中心并求出疵点区域在纬向和经向上的方差;最后通过两者的比值与设定常数的比较,判断出疵点类型.仿真实验表明该方法对常见织物疵点的检测是有效的.  相似文献   

6.
探讨织物疵点自动检测的方法。通过对4种常见织物疵点的图像进行线灰度曲线分析和处理,提取疵点图像的特征值,送入BP神经网络进行识别,从而实现织物疵点的检测。试验结果表明,该方法取得了较好的检测效果,织物疵点识别率达到93%以上。认为,此法能够有效识别出织物中的几类常见疵点,应进一步研究,以提高其识别准确率。  相似文献   

7.
为了识别不同织物表面多种类型的疵点,提出了一种基于矩阵奇异值分解(SVD)的疵点检测方法。首先采用自适应分割技术提取织物图像中包含疵点的感兴趣区域(ROI),其次将包含疵点的ROI部分继续分割成若干小的不重叠的子图像,并对子图像进行奇异值分解。由于奇异值与织物图像的能量信息相关,通过去除表征织物纹理背景能量的奇异值,以余下的奇异值重组子图像,从而增加疵点区域与纹理背景的能量差异。最后再对ROI区域进行复原时,会出现子图像重构过程不完全连接的情况,采用二值化阈值处理可以消除影响,完成检测目的。实验证明,所提出的改进型奇异值分解技术,耗时短,效率高,对于选取的7种纹理结构不同的织物中大多数疵点,都能够识别其形状和位置。  相似文献   

8.
针对于断纱、缺纱、穿错、粗纱等这类结构型织物疵点,由于其具有灰度跳变不明显、疵点面积小的特征在疵点检测过程中难以检测这一问题,本文结合织物图像自身的纹理特征及结构型疵点的方向性特征,创新性地提出基于方向灰度积分曲线特征的织物疵点检测方法,将二维织物图像的疵点检测转化为对一维灰度积分曲线特征的分类识别.该方法通过对输入的图像提取垂直水平方向灰度积分波形曲线,并对积分曲线提取了包括平均值、方差、能量等14个波形特征,然后利用可优化SVM分类算法对提取特征进行疵点判别.通过对漏针、断纱、并经、粗纱等疵点进行检测试验,结果表明,本文提出的疵点检测方法不仅对检测灰度跳变较小的结构型疵点具有较好的检测效果,检测准确率达到了94.34%,而且检测速度快,可以满足实时检测的速度要求.  相似文献   

9.
为实现色织物疵点的有效检测,提出一种应用上下文视觉显著性的疵点检测方法。根据上下文视觉显著性的原则,将织物图像分为大小相同的图像块;然后针对每个图像块,选取K个与其最相似的图像块计算与该图像块的差异值之和,用该差异值之和表示该图像块中心像素的显著性;从而生成一幅视觉显著性图;最后对显著性图进行阈值分割,得到色织物疵点的检测结果。为验证该算法的有效性,将带有纬缩、破洞和跳花等区域性疵点的素色、条纹和格子色织物图像作为样本进行检测。结果表明:该方法可较好地抑制不同种类织物的纹理背景,突出疵点区域,实现疵点的有效检测,该方法在色织物疵点检测上具有一定的可行性。  相似文献   

10.
探讨基于小波分解和奇异值分解的织物疵点检测效果。运用三种算法进行了织物疵点检测。采用基本奇异值分解法进行机织物疵点检测,检测结果受噪声影响较大;采用Haar小波对待测图像进行除噪,边缘检测性较弱。利用Gabor小波良好的图像边缘敏感度、方向和尺度选择性,进行图像滤波,再进行SVD分解。结果表明:Gabor小波和SVD的融合算法可以对图像多种方向多种尺度进行调节,检测效果较好。认为:Gabor小波和奇异值分解相融合算法可应用于机织物疵点检测。  相似文献   

11.
应用深度卷积神经网络的色织物缺陷检测   总被引:3,自引:0,他引:3  
针对织物缺陷检测时传统人工的误检率、漏检率较高问题,提出一种应用深度卷积神经网络的色织物缺陷检测算法。因织物图像采集过程中含有较多噪声且信噪比较低,先对缺陷织物进行最优尺寸高斯滤波,有效滤除细节噪声;再根据织物图像特征建立深度卷积神经网络,利用径向基神经网络的非线性映射能力作用于卷积神经网络,并通过反向传播算法调整权值参数,获取无缺陷样本与训练样本之间的映射函数;最后,利用映射函数及特征字典重构图像并提取特征,根据Meanshift算法分割缺陷,确定缺陷位置。结果表明:应用深度卷积神经网络的缺陷检测算法对色织物图像库中的缺陷图像可实现提高检测效率、缩短检测时间,获取准确缺陷位置的目的。  相似文献   

12.
董蓉  李勃  徐晨 《纺织学报》2016,37(11):141-147
为解决现有基于图像处理的织物瑕疵检测算法实时性较差、正确率偏低等问题,提出一种包含学习和检测2个阶段的瑕疵检测算法。通过对无瑕疵模板图像的梯度能量特征及其分布特性的学习,自适应获得检测阶段所需的参数。一方面利用积分图原理将任意大小的图像块内的求和运算化简为三次加法运算,快速提取织物图像的梯度能量特征,实现织物瑕疵的实时检测,另一方面利用核函数拟合特征参数分布,结合均值漂移法求解分布峰值获得自适应的瑕疵判定阈值参数,实现织物瑕疵的准确分割。通过实验将本文算法与现有基于局部二值模式特征、小波特征、规则带特征等算法进行对比,针对包含3种纹理6类瑕疵的织物图像数据集的测试结果显示,本文算法平均处理时间为56ms,正确率为97%。  相似文献   

13.
织物疵点自动检测技术的研究进展   总被引:6,自引:0,他引:6  
介绍了织物纹理特征的提取算法、疵点分类方法和织物图像处理的硬件平台.在分析了各种算法的优点和缺点的基础上,提出了将织物疵点的检测分为粗检和细检两个过程的新思路,既可满足快速性的要求,又具有广泛的适应性.  相似文献   

14.
为了实现印花织物疵点的自动检测,提出了一种基于改进的高斯混合模型的疵点检测方法。该方法针对传统高斯混合背景模型应用于疵点检测中所出现的精度不高的问题,充分利用印花织物图像像素间具有很强相关性的特点,引入自适应分块建模的思想来实现印花织物疵点的检测。实验结果表明,使用该方法进行疵点检测,正确率可以达到94%。不仅如此,该方法还能有效处理检测过程中所出现的光照不均和噪声等问题,是一种非常适合于对印花织物进行疵点检测的方法。  相似文献   

15.
项子琦 《纺织报告》2020,(1):115-116
纺织工业是我国制造业出口的重要组成部分。布匹的质量控制在纺织工业中尤为重要,而布匹瑕疵是影响布匹质量控制的重要因素之一。在中小企业中,布匹瑕疵识别主要依靠人工流水线作业,存在着人工成本高、人眼识别准确度低等问题。因此,一个有效的布匹瑕疵检验系统是十分必要的,布匹瑕疵分类算法是保证疵点判决效率的核心。基于布匹生产企业存在的问题,有针对性地研究了机器学习与计算机视觉的布匹瑕疵识别算法的基本原理,介绍了各类布匹瑕疵识别中的检测与分类算法,将最近发展迅速的机器学习的理论研究引入布匹瑕疵识别中,对涉及机器学习的模式识别算法进行了介绍。  相似文献   

16.
17.
为解决织物疵点检测工序中存在的耗时性问题,提出一种基于二维经验模态分解(EMD)的多方向自适应检测方法.通过Delaunay三角分割、径向基函数插值与二维三次样条插值等方法实现二维EMD算法,用该方法将织物灰度图像分解为一系列子图像,选取包含疵点信息的子图像进行融合,最后通过阈值化来识别织物图像中的疵点.借助于工业线阵...  相似文献   

18.
纹理织物疵点窗口跳步形态学法检测   总被引:1,自引:0,他引:1  
针对纹理织物疵点自动检测时因生产速度快造成的织物抖动以及检测速度难以匹配问题,提出窗口跳步形态学法纹理织物疵点检测算法。使用该算法对图像进行窗口分割及预处理后,首先对纹理织物图像的纹理特征进行分析,然后设计形态学算子进行腐蚀操作,最后使用连通域分析来确定疵点大小及位置。仿真实验及工厂实际应用表明,该算法可有效克服工业生产中纹理织物抖动造成的图像明暗不均,可检测出纹理织物中存在的破洞、经纬疵点、污渍、断线、折痕和结头等各种疵点,而且检测速度明显优于快速傅里叶变换特征点算法以及传统形态学检测算法。实时检测速度超过80 m/min,疵点检测精度为0.1 mm,满足实际生产需求。  相似文献   

19.
针对经编织物疵点自动检测问题,提出了一种新的基于最优Gabor滤波器的经编织物疵点检测方法。具体可分为学习阶段和检测阶段;在学习阶段,对于无疵点的经编织物图像构造可调制的二维Gabor滤波器,采用量子行为粒子群优化(QPSO)算法对Gabor滤波器的参数进行优化,得到与无疵点的织物图像纹理特征最匹配的Gabor滤波器参数;在检测阶段,由学习阶段得到的最佳参数构造Gabor滤波器,用该滤波器对待检测织物图像进行卷积处理,然后再对得到的卷积图像进行二值化处理,最终识别出待检测织物是否有疵点存在。结果表明,该方法的检测率可以达到96.67%,具有很好的稳定性和鲁棒性,适合应用于工业生产。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号