共查询到17条相似文献,搜索用时 62 毫秒
1.
织物疵点检测是织物表面质量控制的关键环节。基于方向梯度直方图(HOG)和低秩分解,提出一种有效的织物疵点检测算法。首先,将织物图像划分为大小相同的图像块,提取每个图像块的HOG特征,并将图像块特征组成特征矩阵,针对特征矩阵构建有效的低秩分解模型,通过方向交替方法(ADM)优化求解,生成低秩阵和稀疏阵;最后采用改进最优阈值分割算法对由稀疏阵生成的显著图进行分割,从而定位出疵点区域。实验结果表明,低秩分解能有效实现织物疵点的快速分离,与已有方法进行对比,本文方法能显著提高复杂织物纹理图像的疵点检测性能。 相似文献
2.
3.
针对传统低秩分解法导致的图像信息过度丢失和织物弹性导致的歪斜问题,提出一种基于Beta范数的改进低秩分解检测方法。首先,通过提取织物图的基元特征构造先验信息图。其次,采用Beta范数代替低秩分解中的核范数,并由先验信息图引导低秩分解方法对织物图进行分解,解决了传统低秩分解方法中核范数导致的图像信息过度丢失的问题。进而,提取织物图的方向梯度直方图(HOG)特征构造后验信息图,并将后验信息图和通过低秩分解得到的稀疏分量进行哈达玛乘积获得显著图,解决了织物弹性导致的歪斜问题。最后,利用最优阈值分割得到疵点图。将实验结果与已有的4种方法进行对比,结果表明,该方法可以有效抑制歪斜干扰,且检测时间更短。 相似文献
4.
阐述了一阶、二阶微分,Canny和基于小波等多种图像边缘检测方法,并对织物疵点图像进行了边缘检测,分析了各种方法在图像边缘检测应用中的优势和缺陷,结果表明,Canny和小波检测算法对织物疵点图像的边缘检测能够得到满意的效果,提供了较好的织物疵点边缘检测的途径。 相似文献
5.
对织物表面疵点自动识别方法进行了探讨.将信息熵引入图像处理中,先通过最大熵快速迭代算法对织物疵点区域进行分割,把疵点图像分为背景和目标两部分;然后找出疵点区域的中心并求出疵点区域在纬向和经向上的方差;最后通过两者的比值与设定常数的比较,判断出疵点类型.仿真实验表明该方法对常见织物疵点的检测是有效的. 相似文献
6.
探讨织物疵点自动检测的方法。通过对4种常见织物疵点的图像进行线灰度曲线分析和处理,提取疵点图像的特征值,送入BP神经网络进行识别,从而实现织物疵点的检测。试验结果表明,该方法取得了较好的检测效果,织物疵点识别率达到93%以上。认为,此法能够有效识别出织物中的几类常见疵点,应进一步研究,以提高其识别准确率。 相似文献
7.
为了识别不同织物表面多种类型的疵点,提出了一种基于矩阵奇异值分解(SVD)的疵点检测方法。首先采用自适应分割技术提取织物图像中包含疵点的感兴趣区域(ROI),其次将包含疵点的ROI部分继续分割成若干小的不重叠的子图像,并对子图像进行奇异值分解。由于奇异值与织物图像的能量信息相关,通过去除表征织物纹理背景能量的奇异值,以余下的奇异值重组子图像,从而增加疵点区域与纹理背景的能量差异。最后再对ROI区域进行复原时,会出现子图像重构过程不完全连接的情况,采用二值化阈值处理可以消除影响,完成检测目的。实验证明,所提出的改进型奇异值分解技术,耗时短,效率高,对于选取的7种纹理结构不同的织物中大多数疵点,都能够识别其形状和位置。 相似文献
8.
针对于断纱、缺纱、穿错、粗纱等这类结构型织物疵点,由于其具有灰度跳变不明显、疵点面积小的特征在疵点检测过程中难以检测这一问题,本文结合织物图像自身的纹理特征及结构型疵点的方向性特征,创新性地提出基于方向灰度积分曲线特征的织物疵点检测方法,将二维织物图像的疵点检测转化为对一维灰度积分曲线特征的分类识别.该方法通过对输入的图像提取垂直水平方向灰度积分波形曲线,并对积分曲线提取了包括平均值、方差、能量等14个波形特征,然后利用可优化SVM分类算法对提取特征进行疵点判别.通过对漏针、断纱、并经、粗纱等疵点进行检测试验,结果表明,本文提出的疵点检测方法不仅对检测灰度跳变较小的结构型疵点具有较好的检测效果,检测准确率达到了94.34%,而且检测速度快,可以满足实时检测的速度要求. 相似文献
9.
为实现色织物疵点的有效检测,提出一种应用上下文视觉显著性的疵点检测方法。根据上下文视觉显著性的原则,将织物图像分为大小相同的图像块;然后针对每个图像块,选取K个与其最相似的图像块计算与该图像块的差异值之和,用该差异值之和表示该图像块中心像素的显著性;从而生成一幅视觉显著性图;最后对显著性图进行阈值分割,得到色织物疵点的检测结果。为验证该算法的有效性,将带有纬缩、破洞和跳花等区域性疵点的素色、条纹和格子色织物图像作为样本进行检测。结果表明:该方法可较好地抑制不同种类织物的纹理背景,突出疵点区域,实现疵点的有效检测,该方法在色织物疵点检测上具有一定的可行性。 相似文献
10.
11.
应用深度卷积神经网络的色织物缺陷检测 总被引:3,自引:0,他引:3
针对织物缺陷检测时传统人工的误检率、漏检率较高问题,提出一种应用深度卷积神经网络的色织物缺陷检测算法。因织物图像采集过程中含有较多噪声且信噪比较低,先对缺陷织物进行最优尺寸高斯滤波,有效滤除细节噪声;再根据织物图像特征建立深度卷积神经网络,利用径向基神经网络的非线性映射能力作用于卷积神经网络,并通过反向传播算法调整权值参数,获取无缺陷样本与训练样本之间的映射函数;最后,利用映射函数及特征字典重构图像并提取特征,根据Meanshift算法分割缺陷,确定缺陷位置。结果表明:应用深度卷积神经网络的缺陷检测算法对色织物图像库中的缺陷图像可实现提高检测效率、缩短检测时间,获取准确缺陷位置的目的。 相似文献
12.
为解决现有基于图像处理的织物瑕疵检测算法实时性较差、正确率偏低等问题,提出一种包含学习和检测2个阶段的瑕疵检测算法。通过对无瑕疵模板图像的梯度能量特征及其分布特性的学习,自适应获得检测阶段所需的参数。一方面利用积分图原理将任意大小的图像块内的求和运算化简为三次加法运算,快速提取织物图像的梯度能量特征,实现织物瑕疵的实时检测,另一方面利用核函数拟合特征参数分布,结合均值漂移法求解分布峰值获得自适应的瑕疵判定阈值参数,实现织物瑕疵的准确分割。通过实验将本文算法与现有基于局部二值模式特征、小波特征、规则带特征等算法进行对比,针对包含3种纹理6类瑕疵的织物图像数据集的测试结果显示,本文算法平均处理时间为56ms,正确率为97%。 相似文献
13.
按照被检测的织物类型并根据当前研究中所使用的方法,简要综述了近年来基于机器视觉和图像处理的织物疵点检测系统新的应用和发展情况。首先分析了织物疵点自动检测研究的理论和现实意义。给出了织物疵点检测系统中视觉图像获取和疵点图像检测两个关键部分的架构。说明了迫切需要进行检测的两类织物白坯布和色织布,着重讨论了对这两类织物进行疵点检测的各种新方法,并详细说明了其检测效果和存在的不足。最后给出了疵点检测研究的几点建议。 相似文献
14.
针对难以有效地同时检测洞形缺陷和线形缺陷问题,提出一种基于奇异值分解的双算法织物缺陷检测方法。该方法首先对图像进行奇异值分解,通过对原图与特征值图进行布尔差集运算消除背景纹理并保留缺陷区域;然后采用均值滤波、直方图均值化及方差阈值滤波消除纹理及噪声点的干扰;接着通过形态学处理确定缺陷位置;最后采用面积阈值和方差阈值的方式获取线形缺陷和洞形缺陷。实验结果表明:该方法不仅能够有效地检测洞形缺陷,而且在检测线形缺陷上也有很好的表现,并在准确率上明显高于传统算法,证明了本文算法的有效性和多用途性。 相似文献
15.
随着对纺织工业产品质量要求的提高以及传统疵点检测方法存在局限性,基于图像处理技术的织物疵点自动检测技术得到了快速的发展。为提高图像处理技术的应用效率,实现纺织行业的数字化与智能制造,介绍了织物图像的预处理技术,对织物疵点检测的主流方法进行了总结,包括基于结构、统计、频谱、模型和学习的方法,并对这些方法的检测原理做了概括,分析了其优缺点与适用范围;介绍了现有成品检测设备,对比分析了仪器和系统处理技术的优缺点;最后,梳理分析了现有的图像处理技术在纺织工业应用中所面临的难题,并提出了对未来发展的构想。 相似文献
16.
织物疵点自动检测技术的研究进展 总被引:6,自引:0,他引:6
介绍了织物纹理特征的提取算法、疵点分类方法和织物图像处理的硬件平台.在分析了各种算法的优点和缺点的基础上,提出了将织物疵点的检测分为粗检和细检两个过程的新思路,既可满足快速性的要求,又具有广泛的适应性. 相似文献
17.
针对现有算法对不同机织物纹理适应性和实时性不佳的问题,本文提出了一种基于奇异值分解(SVD)的机织物瑕疵检测。首先将正常织物图像的灰度值沿纵横方向进行投影,并将投影所得的序列组成联合投影序列;然后对联合投影序列组成的矩阵进行奇异值分解,并提取基向量;最后应用所提取的基向量对待检测样本进行重构,并通过重构误差区分瑕疵和正常纹理。本文重点探讨了基向量个数和子窗口大小对检测效果的影响。经过4693个样本的实验,结果表明,本文所提算法能够使误检率小于10%,检出率大于90%。与AR模型算法进行实验比较,本文所提算法在检测精度和实时性上都优于AR算法。 相似文献