首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurones in the ureterovesical ganglion complex provide autonomic innervation to the pelvic ureter, the ureterovesical junction and the bladder trigone. We examined the distribution and peptide co-expression pattern of nitric oxide synthase (NOS) in the human ureterovesical ganglia by combining NADPH-diaphorase histochemistry with immunoreactivity for vasoactive intestinal peptide (VIP), neuropeptide Y (NPY), and calcitonin gene-related peptide (CGRP). Less than 20% of nerve cells in the large ganglia of the ureterovesical complex were stained for NOS activity. In elderly individuals, ganglion cells regularly exhibited conspicuous morphological alterations suggestive of degenerative changes. Most of the NOS-positive cell bodies costained for VIP-immunoreactivity. A minority of NOS-expressing cells also reacted for NPY-immunoreactivity. CGRP-immunoreactivity was present in varicose terminal-like nerve fibres which were found to encircle NOS-containing perikarya. Occasionally, NOS-positive somata were surrounded by plexiform axon terminals which immunostained for VIP or NPY. We conclude that the passage of urine across the ureterovesical junction is under relaxatory control of a local nitric oxide/VIP(NPY) pathway which may be modulated by preganglionic efferent and/or primary afferent input.  相似文献   

2.
BACKGROUND & AIMS: Enteric neurons can be characterized by their chemical coding, projections, and morphology. The aim of this study was to describe the different classes of human colonic circular muscle motor neurons. METHODS: Human colonic circular muscle motor neurons were identified by retrograde tracing with 1,1'-didodecyl 3,3,3',3'-indocarbocyanine perchlorate (Dil) applied to the circular muscle layer. Whole-mount preparations of the myenteric plexus were then double-labeled with antisera to choline acetyltransferase (ChAT) and/or nitric oxide synthase (NOS), or NOS and vasoactive intestinal peptide (VIP), and the position and immunoreactivity of Dil-filled neurons were recorded. RESULTS: Fifty-two percent of all Dil-filled neurons were ChAT immunoreactive, and 86% of these projected up to 11 mm orally, with 14% projecting short distances anally. Forty-eight percent of the Dil-filled neurons were NOS immunoreactive, and 77% of these projected up to 19 mm anally, with 23% projecting no more than 6 mm orally. A subpopulation of these NOS-immunoreactive motor neurons were also VIP-immunoreactive. A small population of myenteric neurons was immunoreactive for both ChAT and NOS, but none projected to the circular muscle. NOS-immunoreactive motor neurons projected for longer distances than those with ChAT immunoreactivity and were larger. CONCLUSIONS: There are two classes of human colonic motor neurons: one is excitatory (ChAT-immunoreactive) and mainly projects orally and the other is inhibitory (NOS +/- VIP immunoreactive) and projects preferentially anally.  相似文献   

3.
Stimulation of extrinsic nerves markedly alters pancreatic endocrine and exocrine secretion, yet little is known of the neurochemical organization and physiologic roles of specific neural pathways within the pancreas. Here we report histochemical staining for acetylcholinesterase (AChE), NADPH-diaphorase (NADPH-d), nitric oxide synthase (NOS), and several neuropeptides to identify the neurotransmitter content of rabbit pancreatic nerves. An extensive network of AChE-positive nerve fibers was found throughout the islets, acini, ducts, ganglia, and blood vessels. All pancreatic neurons were AChE positive, two thirds were NADPH-d positive, and many were NOS positive. Ganglia in the head/neck region were connected to the duodenal myenteric plexus by AChE- and NADPH-d-positive fibers, and NADPH-d-positive pancreatic neurons appeared to send processes toward both the duodenum and pancreas. Many pancreatic neurons were vasoactive intestinal peptide (VIP) positive, and VIP nerve terminals were abundant in ganglia, acini, islets, and ducts. Pituitary adenylate cyclase-activating peptide (PACAP-38)-positive fibers also were observed within acini and passing through ganglia. Substance P (SP)-, calcitonin gene-related peptide (CGRP)-, and dopamine beta-hydroxylase (DBH)-positive fibers were abundant along blood vessels and ducts, and varicose fibers were observed in pancreatic ganglia. Fine galanin-positive fibers were also occasionally observed running with blood vessels and through ganglia. Thus the rabbit pancreas receives a dense, diverse innervation by cholinergic, adrenergic, and peptidergic nerves and cholinergic pancreatic neurons, most also containing VIP or NOS or both, appear to innervate both endocrine and exocrine tissue, and may mediate local communication between the duodenum and pancreas.  相似文献   

4.
The neurochemical coding of neurones located in ganglia of the nerve trunk accompanying the chicken ureter was analysed and quantified using NADPH-diaphorase reactivity and immunohistochemistry against tyrosine hydroxylase (TH), nitric oxide synthase (NOS), calbindin (CAL), vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY), somatostatin (SOM), substance P (SP) and calcitonin gene-related peptide (CGRP) in untreated or colchicine-treated preparation. Almost all neurones were either positive for TH (38%) or for SOM (60%). Only 4% of the neurones were both TH- and SOM-positive and 3% of the neurones exhibited neither TH nor SOM immunoreactivity. The relative numbers of NPY-, NOS-, CAL- and VIP-positive neurones were 57%, 28%, 14% and 7%, respectively. No SP- or CGRP-positive neurones were observed. All NADPH-diaphorase-positive neurones expressed NOS immunoreactivity. Only in some TH-positive neurones was NPY and/or NOS found. Four major subpopulations were found in the ureteric ganglia. The SOM-positive neurones were subdivided into SOM/NPY/NOS- (28% of all neurones), SOM/NPY- (18%) and SOM/CAL/NPY-positive neurones (14%). A subpopulation of these peptid- ergic neurones also contained VIP. About 35% of the neurones contained TH only. Neurones of all subpopulations (72% of the neurones), except most of the CAL-positive neurones, were encircled by dense plexus of varicose SP/CGRP-positive, presumably sensory nerve fibres. Dense plexus of VIP-positive fibres were observed around 89% of the neurones. The chemical coding of the neuronal subpopulations identified in the ganglia accompanying the chicken ureter resembled that observed in the ganglia of Remak's nerve but was remarkably different from that of the autonomic neurones described in mammalian species.  相似文献   

5.
The participation of nitric oxide and vasoactive intestinal peptide (VIP) in the neurogenic regulation of bovine cerebral arteries was investigated. Nitrergic nerve fibers and ganglion-like groups of neurons were revealed by NADPH-diaphorase staining in the adventitial layer of bovine cerebral arteries. NADPH diaphorase also was present in endothelial cells but not in the smooth muscle layer. Double immunolabeling for neuronal nitric oxide synthase and VIP indicated that both molecules co-localized in the same nerve fibers in these vessels. Transmural nerve stimulation (200 mA, 0.2 milliseconds, 1 to 8 Hz) of endothelium-denuded bovine cerebral artery rings precontracted with prostaglandin F2 alpha, produced tetrodotoxin-sensitive relaxations that were completely suppressed by NG-nitro-L-arginine methyl ester (L-NAME) and by the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline (ODQ), but were not affected by the adenylyl cyclase inhibitor 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (SQ 22,536), nor by VIP tachyphylaxis induced by pretreatment with 1 mumol/L VIP. Transmural nerve stimulation also elicited increases in intracellular cyclic GMP concentration, which were prevented by L-NAME, and small decreases in intracellular cyclic AMP concentration. Addition of VIP to bovine cerebral artery rings without endothelium produced a concentration-dependent relaxation that was partially inhibited by L-NAME, ODQ, and SQ 22,536. The effects of L-NAME and SQ 22,536 were additive. VIP induced a transient increase in intracellular cyclic GMP concentration, which was maximal 1 minute after VIP addition, when the highest relaxation rate was observed, and which was blocked by L-NAME. It is concluded that nitric oxide produced by perivascular neurons and nerve fibers fully accounts for the experimental neurogenic relaxation of bovine cerebral arteries and that VIP, which also is present in the same perivascular fibers, acts as a neuromodulator by activating neuronal nitric oxide synthase.  相似文献   

6.
Hirschsprung's disease (HSCR) is characterized by a non-propulsive distal intestinal segment (usually colon) leading to a functional obstruction. An absence of ganglia in the affected segment explains the synonymous term "aganglionosis coli". The lack of peristalsis is partly due to a deficient intestinal smooth muscle relaxation based on an absence of non-adrenergic, non-cholinergic (NANC) inhibitory innervation. Morphological studies using conventional microscopy, immunohistochemistry and immunochemistry against general neuronal markers and neuropeptides have been used to characterize the disturbed NANC innervation in HSCR. An increased cholinergic and adrenergic innervation is registered in the aganglionic segment in spite of the lack of neuronal cell bodies: Neuropeptides like vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating polypeptide (PACAP), gastrin-releasing peptide (GRP), calcitonin gene-related peptide (CGRP), substance P (SP), enkephalins and galanin immunoreactive nerve fibres are all reduced in number in the aganglionic segment. In contrast, neuropeptide Y (NPY)-containing nerve fibres are increased in number in the diseased segment, probably reflecting the adrenergic hyperinnervation. General neuronal markers including chromogranins have been used to map the neuronal network in the HSCR intestine and also to investigate the endocrine cell system in the intestinal mucosa. Nitric oxide is a potent component of the NANC inhibitory innervation and its synthesizing enzyme, nitric oxide synthase (NOS), is shown to be almost absent in the neuronal system in aganglionic intestine.  相似文献   

7.
During development, the external muscle of the mouse esophagus undergoes a transdifferentiation from smooth to striated muscle (Patapoutian et al. [1995] Science 270:1818-1821). We now report on the development of the innervation accompanying the change in phenotype of the external muscle of the mouse esophagus. The phenotype of the muscle was monitored by using light and electron microscopy. Nicotinic acetylcholine receptors were localised by using a fluorescence conjugate of alpha-bungarotoxin, and neural elements were localised by using antisera to synaptophysin (a synaptic vesicle protein that was used to label all nerve terminals), the vesicular acetylcholine transporter (VAChT), calcitonin gene-related peptide (CGRP), nitric oxide synthase (NOS), and vasoactive intestinal peptide (VIP). CGRP and VAChT were co-localised in the terminals of vagal motoneurons that innervate the external muscle, and NOS and VIP were co-localised in intrinsic (enteric) neurons, which provide some terminals that are associated with motor endplates. Cells exhibiting striations were first observed in the outer layers of the most rostral regions of the esophagus of embryonic day 15 (E15) mice. Clusters of nicotinic acetylcholine receptors were also first observed at the rostral end of the esophagus of E15 mice, and developed in a rostrocaudal progression that coincided with the appearance of striations within the muscle cells. Synaptophysin-, VAChT- and NOS-immunoreactive nerve terminals were present within the external muscle prior to the formation of receptor clusters, and their appearance did not follow any apparent rostrocaudal sequence. Surprisingly, not all of the receptor clusters at E15 had synaptophysin- and VAChT-immunoreactive nerve terminals closely associated with them. However, from E18 on, almost all of the clusters had synaptophysin-immunoreactive nerve terminals in close association. At late embryonic and early postnatal stages, there was a rostrocaudal gradient in the proportion of receptor clusters having VAChT-immunoreactive nerve terminals associated with them. Nerve terminals associated with nicotinic receptor clusters did not show detectable CGRP-immunoreactivity until one to two weeks after the appearance of synaptophysin- and VAChT-immunoreactivity. The NOS-immunoreactive neurons did not show detectable VIP-immunoreactivity until three days after NOS could be detected. These results show that the appearance of clusters of nicotinic receptors in the external muscle of the esophagus coincides with the expression of a striated muscle phenotype, but not with the presence of ingrowing nerve terminals. However, many of the receptor clusters that were observed first were apparently uninnervated.  相似文献   

8.
In endothelium-denuded guinea-pig isolated basilar artery preparations, hydroxocobalamin (30, 100 and 300 microM) concentration-dependently inhibited the vasodilator responses to exogenous nitric oxide (NO), whereas the vasodilator responses to nitrergic nerve stimulation were slightly reduced by high (100 and 300 microM) but not by the low (30 microM) concentration of hydroxocobalamin. Vasodilatation in response to sodium nitroprusside (10-100 nM) was totally abolished by 300 microM hydroxocobalamin. In endothelium-intact preparations, vasodilator responses to acetylcholine (0.3-3 microM) were significantly reduced or abolished by hydroxocobalamin (30-300 microM). The mean reduction by hydroxocobalamin of relaxations to acetylcholine was significantly greater than that of the equivalent response evoked by nitrergic nerve stimulation. The findings suggest that the nitrergic transmitter in the guinea-pig basilar artery may be quantitatively less susceptible than the endothelium-derived relaxing factor to the NO scavenger hydroxocobalamin.  相似文献   

9.
PURPOSE: Ocular immune privilege is mediated in part by the activity of constitutively produced immunosuppressive cytokines and neuropeptides. Aqueous humor was examined for content of calcitonin gene-related peptide (CGRP), and the potential of CGRP to mediate immunosuppressive activity within aqueous humor was determined. METHODS: The concentration of CGRP in fresh, normal rabbit aqueous humor was assayed by competitive enzyme-linked immunosorbent assay. The ability of CGRP to suppress interferon (IFN)-gamma production by antigen-stimulated, primed lymph node cells was examined by assaying supernatants of stimulated CGRP-treated, primed T-cell cultures for IFN-gamma. The anti-inflammatory activity of aqueous humor and CGRP was assayed by treating IFN-gamma-lipopolysaccharide (LPS)-activated RAW 264.7 cells (macrophages) with aqueous humor, aqueous humor plus anti-CGRP antibody, or CGRP alone. Culture supernatants of the treated macrophages were examined for nitrite by Griess reagent. The production of inducible nitric oxide synthase (NOS2) protein was examined by immunoblotting cell lysates of treated activated macrophages. RESULTS: The constitutive level of CGRP in fresh, normal rabbit aqueous humor was 5+/-1 x 10(-5) M. At its ocular concentration, CGRP did not inhibit IFN-gamma production by stimulated effector T cells, but it suppressed nitric oxide generation by activated macrophages. Neutralization of CGRP in normal rabbit aqueous humor prevented the aqueous humor from suppressing nitric oxide generation by macrophages. Neither CGRP nor aqueous humor suppressed NOS2 protein synthesis in activated inflammatory macrophages. CONCLUSIONS: Calcitonin gene-related peptide is a constitutive neuropeptide in aqueous humor. Through CGRP, aqueous humor suppresses nitric oxide production by activated macrophages. This suppression appears to result from inhibiting NOS2 enzymatic activity, rather than from suppressing NOS2 synthesis. The results imply that the ocular microenvironment has diverse immunoregulatory mechanisms that suppress induction, activation, and mediation of immunogenic inflammation.  相似文献   

10.
PURPOSE: The aim of the present study is to analyze mechanisms underlying neurogenic relaxation of the corpus cavernosum which are believed to participate in penile erection. MATERIALS AND METHODS: Mechanical responses to nerve stimulation by electrical pulses and nicotine were measured in strips of canine corpus cavernosum precontracted with phenylephrine. Cyclic guanosine monophosphate (GMP) contents in the strips were also measured by radioimmunoassay. Immunohistochemistry for nitric oxide synthase (NOS) and vasoactive intestinal polypeptide (VIP) was performed. RESULTS: Transmural electrical stimulation and nicotine produced relaxations in the isolated canine corpus. The neurogenic relaxation was abolished by N omega-nitro-L-arginine, a NOS inhibitor, and the inhibition was reversed by L-arginine. Relaxations induced by nerve stimulation and exogenous nitric oxide (NO) were depressed by oxyhemoglobin and methylene blue. Vasoactive intestinal polypeptide (VIP)-induced relaxations were not influenced by these inhibitors. In the controls strips and those made unresponsive to VIP by its repeated application, the responses to nerve stimulation did not differ. The content of cyclic GMP in the tissue increased in response to nicotine, the effect being abolished by the NO synthase inhibitor. Immunohistochemical study demonstrated neurons containing NOS and VIP. CONCLUSIONS: It appears that the relaxation induced by nerve stimulation is mediated solely by NO liberated from the nerve that activates soluble guanylate cyclase and increases the production of cyclic GMP in smooth muscle, whereas VIP does not play a role in the regulation of muscle tone under the experimental conditions used.  相似文献   

11.
Calcitonin gene-related peptide (CGRP) and vasoactive intestinal polypeptide (VIP) are intrinsic vasodilatory substances contained in perivascular nerve fibers innervating large intracranial arteries. Effects of these substances on delayed cerebral vasospasm were examined using a rabbit model of experimental subarachnoid hemorrhage (SAH). Sixty-one anesthetized rabbits received intrathecal fresh arterial blood on day-1 and intrathecal administration of different doses of CGRP, VIP or distilled water on day-4. Prior to the treatment, caliber of the spastic basilar artery was 73.4 +/- 0.9% of pre-SAH values. Serial angiograms after treatment demonstrated that 10(-10)mol/kg of CGRP dilated the spastic artery to 117.1% of pre-SAH levels and that dilatory effect of CGRP continued up to 6 hours after treatment. VIP injection also brought arterial dilatation up to 114.9% of pre-SAH levels, although the duration of the effect was less than 3 hours. Intrathecal administration of CGRP or VIP showed no adverse effect on the systemic and neurological state of the animals. These results indicate that intrathecal CGRP and VIP have therapeutic potential in treating delayed cerebral vasospasm after subarachnoid hemorrhage. Further investigations are expected to extend the effect of CGRP and VIP.  相似文献   

12.
The effects of adrenomedullin on isolated rat intracerebral arterioles were investigated and compared with those of calcitonin gene-related peptide (CGRP) and amylin. Adrenomedullin produced dose-dependent vasodilation (maximum dilation 27.1 +/- 2.1% at 3 x 10(-7) M, median effective dose (EC50)) 1.6 x 10(-9) M). CGRP produced similar vasodilation (19.8 +/- 4.1%) at 10(-7) M with a lower EC50 of 2.8 x 10(-11) M. Amylin did not cause vasodilation at concentrations up to 10(-6) M. Adrenomedullin-induced vasodilation was significantly suppressed by CGRP-(8-37). These data suggest that adrenomedullin is a potent vasodilator for arterioles in the cerebral microcirculation that acts through CGRP receptors.  相似文献   

13.
The distribution of peptide-containing nerve fibers and the effect of their neuropeptides on motor activity were studied in the muscularis mucosae of the guinea-pig proximal colon. In the immunohistochemical study, it was shown that the tachykinin (TK)-containing nerve fibers densely innervated the muscularis mucosae. In the superfusion study, three kinds of TKs, i.e., neurokinin A (NK-A), neurokinin B (NK-B) or substance P (SP), enhanced the spontaneous activity on the strips of muscularis mucosae with a tetrodotoxin (TTX)-insensitive manner. Their potency was in the rank order of NK-A > SP. This suggests that the muscle has a predominant NK2 receptor. Calcitonin gene-related peptide (CGRP)-immunoreactive fibers were commonly observed in the muscle. CGRP induced a potent inhibition on spontaneous activity and a concentration-dependent inhibition on the NK-A-elicited excitation in the presence of TTX, indicating its direct effect on the receptor in the muscle. On the other had, gastrin releasing peptide (GRP), galanin, neuropeptide Y or somatostatin were more or less immunopositive in nerve fibers, but they had no effect on the motility of the muscle except that GRP sometimes showed a faint increase in spontaneous activity. Neither methionine-enkephalin nor gastrin-17/cholecystokinin was immunoreactive and had any effect on the muscle. These neuropeptides other than TKs and CGRP do not seem to be neuromediators of motor activity of muscularis mucosae. The results suggest the possibility that TK-, especially NK-A- and CGRP-containing neurons, participate in the regulation of motor activity of the muscularis mucosae in the guinea-pig proximal colon.  相似文献   

14.
We have made an immunohistochemical study of the vomeronasal (VN) complex of 12-day-old rats to characterize the innervation of its blood vessels. The VN complex can be subdivided into rostral, middle and caudal segments, each one with a particular vascularization pattern. Several small vessels were associated with the rostral segment, whereas a large venous sinus ran along the middle and caudal segments. Immunostaining for alpha-smooth muscle actin demonstrated that the muscular sheath was asymmetric, with more cells layers in its lateral than in its medial walls. Nerves were demonstrated with antisera against protein gene product 9.5 (PGP), and against several molecules associated with specific classes of nerve fibers: the C-terminal peptide of neuropeptide Y (CPON), calcitonin gene-related peptide (CGRP), substance P (SP), galanin (GAL), vasoactive intestinal peptide (VIP) and neuronal nitric oxide synthase (NOS). The latter, was also studied with NADPH-diaphorase. Vascular associated fibers exhibited NOS-, CPON-, GAL-, CGRP-, SP- and VIP-immunoreactivity. Only the vessels of the rostral segment showed VIP-immunoreactive fibers. Each wall of the venous sinus exhibited different types of nerve fibers. CPON-, GAL-, CGRP- and SP-immunoreactive fibers concentrated in the medial wall, whereas NOS-immunoreactive ones concentrated in the lateral wall. This distribution of vascular fibers, plus the presence of sensory fibers exhibiting CGRP-, SP- and GAL-immunoreactivity within the pseudostratified epithelium of the VN tube, would be relevant to understand the operation of the pumping mechanism regulating influx and efflux from the VN tube.  相似文献   

15.
PURPOSE: As growth hormone has been reported to improve nerve regeneration, we studied the effect of rat growth hormone (GH) on the regeneration of nitric oxide synthase (NOS)-containing penile nerves and the neurons in the pelvic ganglia after unilateral cavernous nerve neurotomy in rats. MATERIALS AND METHODS: Male rats were divided into three groups: sham operation (n = 14); unilateral neurotomy of a 5 mm. segment of the cavernous nerve (n = 14) with subsequent injection of buffer solution only; and unilateral neurotomy with GH injection (n = 14). Electrostimulation of the intact cavernous nerve was performed at 1 and 3 months. Nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase staining was used to identify NOS in penile nerve fibers of the mid-shaft segment and in neurons of the pelvic ganglia. RESULTS: One month after unilateral neurotomy, both the buffer alone and GH-treated groups showed a significant decrease in NOS-containing nerve fibers in the dorsal and intracavernosal nerves on the side of neurotomy. At 3 months, the number of NOS-containing nerve fibers in the buffer alone group did not increase, while the GH-treated group showed a significant increase. In the GH-treated group at 3 months, more NOS-positive neurons in the pelvic ganglia were found on the intact side than on the side of neurotomy (p <0.034), indicating that the regeneration derives from pelvic ganglion neurons on the intact side. Furthermore, electrostimulation in the GH-treated group revealed a greater maximal intracavernosal pressure and a shorter latency period at 3 months than in those given buffer alone. CONCLUSIONS: Our results show that GH injection significantly enhances the regeneration of NOS-containing fibers in the dorsal and intracavernosal nerves after unilateral cavernous nerve injury. We believe that GH administration may present a new and more physiologic approach to the treatment of erectile dysfunction after radical pelvic surgery.  相似文献   

16.
Responses to the histamine H3 receptor agonist R-(-)-alpha-methyl-histamine were investigated in the mesenteric vascular bed of the cat under constant-flow conditions. Injections of R-(-)-alpha-methyl-histamine and histamine caused dose-related decreases in mesenteric perfusion pressure with R-(-)-alpha-methyl-histamine being 1000-fold less potent than histamine when doses were compared on a nmol basis to take molecular weight into account. Responses to R-(-)-alpha-methyl-histamine were not altered by histamine H1 or H2 receptor antagonists at a time when responses to histamine were significantly reduced. The histamine H3 receptor antagonist thioperamide reduced responses to R-(-)-alpha-methyl-histamine but was without effect on responses to histamine [6-[2-(4-imidazolyl)ethylamino]-N-(4-trifluoro-methylphenyl)heptaneca rdoxamide dimaleate] (HTMT), or dimaprit. These data suggest the presence of histamine H1, H2 and H3 receptors mediating vasodilation in the mesenteric vascular bed. Responses to R-(-)-alpha-methyl-histamine and histamine were reduced by the nitric oxide synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) but were not altered by the cyclooxygenase inhibitor meclofenamate, the alpha-adrenoceptor blocker phentolamine, or adrenergic nerve terminal depleting agent reserpine. The present data suggest that histamine H3 receptors mediating vasodilation are present in the mesenteric vascular bed and that responses are mediated by the release of nitric oxide but not vasodilator prostaglandins or an effect on the adrenergic nervous system. These results indicate that vasodilator responses to histamine involve the activation of histamine H1 and H2 receptors and the release of nitric oxide in the mesenteric vascular bed of the cat.  相似文献   

17.
Nitric oxide and vasoactive intestinal polypeptide (VIP) are important inhibitory neurotransmitters mediating relaxation of the internal anal sphincter. The location and coexistence of these two neurotransmitters in the internal anal sphincter has not been examined. We performed a double-labeling study to examine the coexistence of nitric oxide synthase and VIP in the opossum internal anal sphincter using the NADPH-diaphorase technique which is a histochemical stain for nitric oxide synthase. In perfusion-fixed, frozen-sectioned tissue, VIP-immunoreactive neurons were labeled using immunofluorescence histochemistry. After photographing the VIP-immunoreactive neurons, nitric oxide synthase was labeled using the NADPH-diaphorase technique. Ganglia containing neuronal cell bodies were present in the myenteric plexus for the entire extent of the internal anal sphincter. VIP-immunoreactive and NADPH-diaphorase-positive neurons were present in ganglia in the myenteric as well as the submucosal plexuses. Most of the VIP-immunoreactive neurons were also NADPH-diaphorase positive. VIP and nitric oxide synthase are present and frequently coexist in neurons in the internal anal sphincter of the opossum. These neurons may be an important source of inhibitory innervation mediating the rectoanal reflex-induced relaxation of the sphincter. The demonstration of the coexistence of these two neurotransmitters will be of fundamental importance in unraveling their relationship and interaction in the internal anal sphincter as well as other systems.  相似文献   

18.
In this study we investigated peptides that increase rat platelet cAMP in porcine thyroid gland. Gel filtration of extracts from porcine thyroid gland showed high and low molecular weight activity. Low molecular weight activity contained peptides, including calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP) and peptide histidine isoleucine (PHI). We isolated a high molecular weight peptide (M. W. 11,000) showing potent activity able to increase rat platelet cAMP in porcine thyroid gland. The peptide's N-terminal sequence was determined to be Ser-X-Asn-Thr-Ala-Thr- by gas phase sequencer analysis, a sequence identical to that of porcine CGRP. The peptide had CGRP immunoreactivity as well as platelet cAMP elevating activity. By gel filtration HPLC, synthetic human CGRP (M. W. 3790) was eluted in a position corresponding to M. W. 5,500. These results suggest that judging from its high molecular weight the above peptide is a dimeric form of CGRP.  相似文献   

19.
omega-Agatoxin-IVA, a peptide from the venom of the funnel-web spider Agelenopsis aperta and a P type Ca2+ channel inhibitor, was examined for effects on responses to nerve stimulation in isolated autonomic neuroeffector preparations from the rabbit, guinea-pig and rat. Ca(2+)-dependent, tetrodotoxin sensitive, noradrenergic excitatory responses of rabbit pulmonary artery, rat vas deferens, and anococcygeus muscles, and cholinergic guinea-pig myenteric plexus preparations (all highly sensitive to the N type Ca2+ channel inhibitor omega-conotoxin-GVIA) were unaffected by omega-agatoxin-IVA (100 nM). Similarly, the neurogenic response of rat bladder, which has cholinergic, and non-adrenergic non-cholinergic (NANC) excitatory components, and the NANC inhibitory response of rat jejunum (atropine 0.5 microM- and guanethidine 5.0 microM-treated), which are partially sensitive and insensitive to omega-conotoxin-GVIA, respectively, were unaffected by omega-agatoxin-IVA (100 nM). Neurogenic NANC inhibitory responses of the guinea-pig taenia caecum, and rat anococcygeus muscles (atropine- and guanethidine-treated, and tone raised with prostaglandin F2 alpha), were also insensitive to omega-agatoxin-IVA. These results suggest that P type Ca2+ channels, if present, play an insignificant role in supplying the Ca2+ necessary for neurotransmitter release in the peripheral autonomic nervous system.  相似文献   

20.
To explore the role of calcitonin gene-related peptide (CGRP) in rat pregnancy, we determined the density of myometrial CGRP-encoded nerve fibre terminals and examined, in an organ bath, the relaxant effect of the peptide on uterine strips near parturition. Comparisons were made with the uterus and aorta of nonpregnant rats. In the myometrium, CGRP immunoreactive nerve fibers were abundant in nonpregnant rats and scarce at the parturient stage. In the aorta there was no variation in the density of CGRP fibres with gestation. In nonpregnant rats only, CGRP relaxed spontaneous and tetrodotoxin (TTX)-sensitive electrically-evoked uterine contractions (EC50 40 nM, Emax 80%). The effect was antagonized by CGRP[8-37] (pKB 6.47) but was not affected by either blockers of nitricoxid synthase or ATP-sensitive potassium channels. CGRP was also able to relax contractions evoked by direct depolarization of the cells (TTX-insensitive contractions) (EC50, 2 nM, Emax 70%). In aorta contracted with arginine vasopressin, CGRP-induced relaxation was the same in nonpregnant and parturient animals. It was antagonized by CGRP [8-371 (pKB 6.90) and was abolished in presence of the nitric oxide synthase inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME). Amylin neither relaxed the uterus nor the aorta. In pregnant rats, the relaxant effect of CGRP on the uterus was limited on day 21 and was totally absent on day 22 of gestation. We conclude that the primary relaxant effect of CGRP on the uterus occurs at the level of myometrial smooth muscle cells. In the myometrium, gestation decreases CGRP innervation and impairs the relaxant responses to CGRP. Such changes are not observed in vascular tissues like aorta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号