首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Active surface-enhanced Raman scattering (SERS) substrates, 3D nano-arrays of Ag nanoparticles (NPs) and graphene quantum dots (GQDs), were prepared using a photochemical approach and an electrophoresis deposition technique with the formation mechanism addressed. The GQDs (ca. 6?nm average) fit into the inter-particle gaps between Ag NPs, as verified by their scanning electron microscopy and high-resolution transmission electron microscopy. This deliberately designed 3D assembly of Ag NPs and GQDs could promote the synergistic effects of both components to further enhance the SERS performances according to both electromagnetic mechanism and chemical mechanism. Preliminary experiments show that the 3D substrates exhibited strong SERS signals comparing with bare Si substrates. This work provides a promising way for 3D SERS substrates.  相似文献   

2.
The assembly of plasmonic metal nanoparticles into hot spot surface‐enhanced Raman scattering (SERS) nanocluster probes is a powerful, yet challenging approach for ultrasensitive biosensing. Scaffolding strategies based on self‐complementary peptides and proteins are of increasing interest for these assemblies, but the electronic and the photonic properties of such hybrid nanoclusters remain difficult to predict and optimize. Here, split‐green fluorescence protein (sGFP) fragments are used as molecular glue and the GFP chromophore is used as a Raman reporter to assemble a variety of gold nanoparticle (AuNP) clusters and explore their plasmonic properties by numerical modeling. It is shown that GFP seeding of plasmonic nanogaps in AuNP/GFP hybrid nanoclusters increases near‐field dipolar couplings between AuNPs and provides SERS enhancement factors above 108. Among the different nanoclusters studied, AuNP/GFP chains allow near‐infrared SERS detection of the GFP chromophore imidazolinone/exocyclic C?C vibrational mode with theoretical enhancement factors of 108–109. For larger AuNP/GFP assemblies, the presence of non‐GFP seeded nanogaps between tightly packed nanoparticles reduces near‐field enhancements at Raman active hot spots, indicating that excessive clustering can decrease SERS amplifications. This study provides rationales to optimize the controlled assembly of hot spot SERS nanoprobes for remote biosensing using Raman reporters that act as molecular glue between plasmonic nanoparticles.  相似文献   

3.
A facile fabrication approach of large‐scale flexible films is reported, with one surface side consisting of Ag‐nanoparticle (Ag‐NP) decorated polyacrylonitrile (PAN) nanohump (denoted as Ag‐NPs@PAN‐nanohump) arrays. This is achieved via molding PAN films with ordered nanohump arrays on one side and then sputtering much smaller Ag‐NPs onto each of the PAN‐nanohumps. Surface‐enhanced Raman scattering (SERS) activity of the Ag‐NPs@PAN‐nanohump array films can be improved by curving the flexible PAN film with ordered nanohump arrays during the Ag‐sputtering process to increase the density of the Ag‐NPs on the sidewalls of the PAN‐nanohumps. More 3D hot spots are thus achieved on a large‐scale. The Ag‐NPs@PAN‐nanohump array films show high SERS activity with good Raman signal reproducibility for Rhodamine 6G probe molecules. To trial their practical application, the Ag‐NPs@PAN‐nanohump array films are employed as SERS substrates for trace detection of trinitrotoluene and a congener of polychlorinated biphenyls. A lower detection limit of 10−12m and 10−5m can be achieved, respectively. Furthermore, the flexible Ag‐NPs@PAN‐nanohump array films can also be utilized as swabs to probe traces of methyl parathion on the surface of fruits such as apples. The as‐fabricated SERS substrates therefore have promising potential for applications in rapid safety inspection and environmental protection.  相似文献   

4.
A reliable method to prepare a surface‐enhanced Raman scattering (SERS) active substrate is developed herein, by electrodeposition of gold nanoparticles (Au NPs) on defect‐engineered, large area chemical vapour deposition graphene (GR). A plasma treatment strategy is used in order to engineer the structural defects on the basal plane of large area single‐layer graphene. This defect‐engineered Au functionalized GR, offers reproducible SERS signals over the large area GR surface. The Raman data, along with X‐ray photoelectron spectroscopy and analysis of the water contact angle are used to rationalize the functionalization of the graphene layer. It is found that Au NPs functionalization of the “defect‐engineered” graphene substrates permits detection of concentrations as low as 10?16 m for the probe molecule Rhodamine B, which offers an outstanding molecular sensing ability. Interestingly, a Raman signal enhancement of up to ≈108 is achieved. Moreover, it is observed that GR effectively quenches the fluorescence background from the Au NPs and molecules due to the strong resonance energy transfer between Au NPs and GR. The results presented offer significant direction for the design and fabrication of ultra‐sensitive SERS platforms, and also open up possibilities for novel applications of defect engineered graphene in biosensors, catalysis, and optoelectronic devices.  相似文献   

5.
Magnetic‐plasmonic nanoparticles have received considerable attention for widespread applications. These nanoparticles (NPs) exhibiting surface‐enhanced Raman scattering (SERS) activities are developed due to their potential in bio‐sensing applicable in non‐destructive and sensitive analysis with target‐specific separation. However, it is challenging to synthesize these NPs that simultaneously exhibit low remanence, maximized magnetic content, plasmonic coverage with abundant hotspots, and structural uniformity. Here, a method that involves the conjugation of a magnetic template with gold seeds via chemical binding and seed‐mediated growth is proposed, with the objective of obtaining plasmonic nanostructures with abundant hotspots on a magnetic template. To obtain a clean surface for directly functionalizing ligands and enhancing the Raman intensity, an additional growth step of gold (Au) and/or silver (Ag) atoms is proposed after modifying the Raman molecules on the as‐prepared magnetic‐plasmonic nanoparticles. Importantly, one‐sided silver growth occurred in an environment where gold facets are blocked by Raman molecules; otherwise, the gold growth is layer‐by‐layer. Moreover, simultaneous reduction by gold and silver ions allowed for the formation of a uniform bimetallic layer. The enhancement factor of the nanoparticles with a bimetallic layer is approximately 107. The SERS probes functionalized cyclic peptides are employed for targeted cancer‐cell imaging and separation.  相似文献   

6.
The focusing of plasmons to obtain a strong and localized electromagnetic‐field enhancement for surface‐enhanced Raman scattering (SERS) is increasing the interest in using plasmonic devices as molecular sensors. In this Full Paper, we report the successful fabrication and demonstration of a solid‐state plasmonic nanoslit–cavity device equipped with nanoantennas on a freestanding thin silicon membrane as a substrate for SERS. Numerical calculations predict a strong and spatially localized enhancement of the optical field in the nanoslit (6 nm in width) upon irradiation. The predicted enhancement factor of SERS was 5.3 × 105, localized in an area of just 6 × 1.5 nm2. Raman spectroscopy and imaging confirm an enhancement factor of ≈106 for SERS from molecules chemisorbed at the nanoslit, and demonstrate the electromagnetic‐field‐enhancing function of the plasmonic nanoantennas. The freestanding membrane is open on both sides of the nanoslit, offering the potential for through‐slit molecular translocation studies, and opening bright new perspectives for SERS applications in real‐time (bio)chemical analysis.  相似文献   

7.
Zong S  Wang Z  Yang J  Cui Y 《Analytical chemistry》2011,83(11):4178-4183
We report an intracellular pH sensor based on surface enhanced Raman scattering (SERS) using the hydrochloric acid (HCl) treated gold nanorods (GNRs) as the SERS substrates and p-aminothiophenol (pATP) as the Raman reporter. Using the HCl treated GNRs previously reported by us, the biocompatibility and the SERS performance of GNRs have been greatly improved. Meanwhile, the adsorbed reporters are allowed to be directly exposed to the surrounding environments, which is very important for biosensors. It is found that the SERS spectrum of pATP is strongly dependent on the pH value. The intensities of SERS bands at 1142 cm(-1), 1390 cm(-1), and 1432 cm(-1) increased obviously with the pH value varying from 3.0 to 8.0. This pH-dependent SERS performance of pATP-functionalized HCl treated GNRs was well retained after the incorporation of the GNRs into living HeLa cells. Our experimental results indicate that such pATP-functionalized HCl treated GNRs can be used as an effective intracellular pH sensor. Thus, we show a good example that the bioapplications of the normal CTAB-stabilized GNRs can be expanded after the simple HCl treatment.  相似文献   

8.
Sun Y  Wei G  Song Y  Wang L  Sun L  Guo C  Yang T  Li Z 《Nanotechnology》2008,19(11):115604
Silver nanoparticles (Ag NPs) are one of the active substrates that are employed extensively in surface-enhanced Raman scattering (SERS), and aggregations of Ag NPs play an important role in enhancing the Raman signals. In this paper, we fabricated two kinds of SERS-active substrates utilizing the electrostatic adsorption and superior assembly properties of type I collagen. These were collagen-Ag NP aggregation films and nanoporous Ag films. Two probe molecules, 4-aminothiophenol (4-ATP) and methylene blue (MB), were studied on these substrates. These substrates showed reproducible SERS intensities with relative standard deviations (RSDs) of 8-10% and 11-14%, respectively, while the RSDs of the traditional thick Ag films were 12-28%. Also, the intensities for the 4-ATP spectrum on the collagen-templated nanoporous Ag film were approximately one order higher than those on the DNA-templated Ag?film.  相似文献   

9.
Topotaxial growth of Au(x) Ag(1-x) alloy nanowires (NWs) by postepitaxial deposition of Ag vapor on Au NWs and investigation of their plasmonic properties are reported. Ag vapor is supplied onto the epitaxially grown Au NWs, topotaxially turning them into Au(x) Ag(1-x) alloy NWs. The original geometries and alignments of the Au nanostructures are well preserved, while the composition of the alloy NWs is controlled by varying the Ag vapor supply time. The Au(0.5) Ag(0.5) NWs show high surface-enhanced Raman scattering (SERS) activity comparable to that of Ag NWs as well as highly increased oxidation resistance. The plasmon-active wavelength range of the Au(0.5) Ag(0.5) NW is significantly extended to the blue region compared to Au NWs. The Au(x) Ag(1-x) alloy NWs that have plasmonic activity in the blue region in addition to high corrosion resistance will make a superb material for practical plasmonic devices including SERS sensors and optical nanoantennas.  相似文献   

10.
An economical method of fabricating large‐area (up to a 100‐mm wafer) silver (Ag)‐coated black silicon (BS) substrates is demonstrated by cryogenic deep reactive ion etching with inductively coupled plasma. This method enables a simple adjustment of the spike structure (e.g., height, width, sidewall slope and density of the spikes) on the silicon substrate, which thus offers the advantages of accurate tuning the density and amplitude of the localized surface plasmons after Ag coating. Using this method, an enhancement factor of 109 is achieved for the probe molecule of rhodamine 6G (around two orders of magnitude higher than previous results based on Ag‐coated BS) in surface‐enhanced Raman scattering (SERS) measurement. The presented results pave the way to make Ag‐coated BS substrates as economic and large‐area platforms for diverse surface plasmon related applications (such as SERS and surface plasmon based biosensors).  相似文献   

11.
The vibrational spectra and surface-enhanced Raman scattering (SERS) of 1,6-diphenyl-1,3,5-hexatriene (DPH) are discussed. The fundamental vibrational frequencies, overtones, and combinations observed in the infrared and Raman spectra of DPH are reported. The interpretation of the observed vibrational spectra was supported by a complete geometry optimization, followed by vibrational frequency and intensity computations for the cis- and trans- isomers of the DPH using density functional theory at the B3LYP/6-31G(d,p) level of theory. Because the molecule is photo-chemically active on Ag metal surfaces, the best SERS results for silver islands were obtained at low temperature and low energy density of the exciting laser line. DPH SERS on Au films was obtained at room temperature.  相似文献   

12.
Graphene is emerging as a promising material for plasmonics applications due to its strong light-matter interactions, most of which are theoretically predicted but not yet experimentally realized. Therefore, the integration of plasmonic nanoparticles to create metal nanoparticle/graphene composites enables numerous phenomena important for a range of applications from photonics to catalysis. For these applications it is important to articulate the coupling of photon-based excitations such as the interaction between plasmons in each of the material components, as well as their charge-based interactions dependent upon the energy alignment at the metal/graphene interface. These coupled phenomena underpin an active application area in graphene-based composites due to nanoparticle-dependent surface-enhanced Raman scattering (SERS) of graphene phonon modes. This study reveals the coupling of a graphene/SiC support with Ga-nanoparticle-localized surface plasmon resonance, which is of particular interest due to its ability to be tuned across the UV into the near-IR region. This work is the first demonstration of the evolving plasmon resonance on graphene during the synthesis of surface-supported metal nanoparticles, thus providing evidence for the theoretically predicted screening revealed by a damped resonance with little energy shift. Therefore, the role of the graphene/substrate heterojunction in tailoring the plasmon resonance for nanoplasmonic applications is shown. Additionally, the coupled phenomena between the graphene-Ga plasmon properties, charge transfer, and SERS of graphene vibrational modes are explored.  相似文献   

13.
Plasmonic nanostructures have raised the interest of biomedical applications of surface-enhanced Raman scattering (SERS). To improve the enhancement and produce sensitive SERS probes, porous Au–Ag alloy nanoparticles (NPs) are synthesized by dealloying Au–Ag alloy NP-precursors with Au or Ag core in aqueous colloidal environment through galvanic replacement reaction. The novel designed core–shell Au–Ag alloy NP-precursors facilitate controllable synthesis of porous nanostructure, and dealloying degree during the reaction has significant effect on structural and spectral properties of dealloyed porous NPs. Narrow-dispersed dealloyed NPs are obtained using NPs of Au/Ag ratio from 10/90 to 40/60 with Au and Ag core to produce solid core@porous shell and porous nanoshells, having rough surface, hollowness, and porosity around 30–60%. The clean nanostructure from colloidal synthesis exhibits a redshifted plasmon peak up to near-infrared region, and the large accessible surface induces highly localized surface plasmon resonance and generates robust SERS activity. Thus, the porous NPs produce intensely enhanced Raman signal up to 68-fold higher than 100 nm AuNP enhancement at single-particle level, and the estimated Raman enhancement around 7800, showing the potential for highly sensitive SERS probes. The single-particle SERS probes are effectively demonstrated in quantitative monitoring of anticancer drug Doxorubicin release.  相似文献   

14.
Broadband infrared (IR) absorption is sought after for wide range of applications. Graphene can support IR plasmonic waves tightly bound to its surface, leading to an intensified near-field. However, the excitation of graphene plasmonic waves usually relies on resonances. Thus, it is still difficult to directly obtain both high near-field intensity and high absorption rate in ultra-broad IR band. Herein, a novel method is proposed to directly realize high near-field intensity in broadband IR band by graphene coated manganous oxide microwires featured hierarchical nanostructures (HNSs-MnO@Gr MWs) both experimentally and theoretically. Both near-field intensity and IR absorption of HNSs-MnO@Gr MWs are enhanced by at least one order of magnitude compared to microwires with smooth surfaces. The results demonstrate that the HNSs-MnO@Gr MWs support vibrational sensing of small organic molecules, covering the whole fingerprint region and function group region. Compared with the graphene-flake-based enhancers, the signal enhancement factors reach a record high of 103. Furthermore, just a single HNSs-MnO@Gr MW can be constructed to realize sensitively photoresponse with high responsivity (over 3000 V W−1) from near-IR to mid-IR. The graphene coated dielectric hierarchical micro/nanoplatform with enhanced near-field intensity is scalable and can harness for potential applications including spectroscopy, optoelectronics, and sensing.  相似文献   

15.
Optical theranostic applications demand near‐infrared (NIR) localized surface plasmon resonance (LSPR) and maximized electric field at nanosurfaces and nanojunctions, aiding diagnosis via Raman or optoacoustic imaging, and photothermal‐based therapies. To this end, multiple permutations and combinations of plasmonic nanostructures and molecular “glues” or linkers are employed to obtain nanoassemblies, such as nanobranches and core–satellite morphologies. An advanced nanoassembly morphology comprising multiple linear tentacles anchored onto a spherical core is reported here. Importantly, this core‐multi‐tentacle‐nanoassembly (CMT) benefits from numerous plasmonic interactions between multiple 5 nm gold nanoparticles (NPs) forming each tentacle as well as tentacle to core (15 nm) coupling. This results in an intense LSPR across the “biological optical window” of 650?1100 nm. It is shown that the combined interactions are responsible for the broadband LSPR and the intense electric field, otherwise not achievable with core–satellite morphologies. Further the sub 80 nm CMTs boosted NIR‐surface‐enhanced Raman scattering (SERS), with detection of SERS labels at 47 × 10‐9 m , as well as lower toxicity to noncancerous cell lines (human fibroblast Wi38) than observed for cancerous cell lines (human breast cancer MCF7), presents itself as an attractive candidate for use as biomedical theranostics agents.  相似文献   

16.
We quantitatively studied, using X-ray photoelectron spectroscopy (XPS), oxidation of substrate-immobilized silver nanoparticles (Ag NPs) in a wide range of conditions, including exposure to ambient air and controlled ozone environment under UV irradiation, and we correlated the degree of silver oxidation with surface-enhanced Raman scattering (SERS) enhancement factors (EFs). The SERS activity of pristine and oxidized Ag NPs was assessed by use of trans-1,2-bis(4-pyridyl)ethylene (BPE) and sodium thiocynate as model analytes at the excitation wavelength of 532 nm. Our study showed that the exposure of Ag NPs to parts per million (ppm) level concentrations of ozone led to the formation of Ag(2)O and orders of magnitude reduction in SERS EFs. Such an adverse effect was also notable upon exposure of Ag NPs under ambient conditions where ozone existed at parts per billion (ppb) level. The correlated XPS and SERS studies suggested that formation of just a submonolayer of Ag(2)O was sufficient to decrease markedly the SERS EF of Ag NPs. In addition, studies of changes in plasmon absorption bands pointed to the chemical enhancement as a major reason for deterioration of SERS signals when substrates were pre-exposed to ambient air, and to a combination of changes in chemical and electromagnetic enhancements in the case of substrate pre-exposure to elevated ozone concentrations. Finally, we also found UV irradiation and ozone had a synergistic effect on silver oxidation and thus a detrimental effect on SERS enhancement of Ag NPs and that such oxidation effects were analyte-dependent, as a result of inherent differences in chemical enhancements and molecular binding affinities for various analytes.  相似文献   

17.
Plasmonically coupled graphene structures have shown great promise for sensing applications. Their complex and cumbersome fabrication, however, has prohibited their widespread application and limited their use to rigid, planar surfaces. Here, a plasmonic sensor based on gold nanowire arrays on an elastomer with an added graphene monolayer is introduced. The stretchable plasmonic nanostructures not only significantly enhance the Raman signal from graphene, but can also be used by themselves as a sensor platform for 2D strain sensing. These nanowire arrays on an elastomer are fabricated by template‐stripping based nanotransfer printing, which enables a simple and fast production of stable nanogratings. The ultrasmooth surfaces of such transferred structures facilitate reliable large‐area transfers of graphene monolayers. The resulting coupled graphene‐nanograting construct exhibits ultrahigh sensitivity to applied strain, which can be detected by shifts in the plasmonic‐enhanced Raman spectrum. Furthermore, this sensor enables the detection of adsorbed molecules on nonplanar surfaces through graphene‐assisted surface enhanced Raman spectroscopy (SERS). The simple fabrication of the plasmonic nanowire array platform and the graphene‐coupled devices have the potential to trigger widespread SERS applications and open up new opportunities for high‐sensitivity strain sensing applications.  相似文献   

18.
The cost‐effective self‐assembly of 80 nm Au nanoparticles (NPs) into large‐domain, hexagonally close‐packed arrays for high‐sensitivity and high‐fidelity surface‐enhanced Raman spectroscopy (SERS) is demonstrated. These arrays exhibit specific optical resonances due to strong interparticle coupling, which are well reproduced by finite‐difference time‐domain (FDTD) simulations. The gaps between NPs form a regular lattice of hot spots that enable a large amplification of both photoluminescence and Raman signals. At smaller wavelengths the hot spots are extended away from the minimum‐gap positions, which allows SERS of larger analytes that do not fit into small gaps. Using CdSe quantum dots (QDs) a 3–5 times larger photoluminescence enhancement than previously reported is experimentally demonstrated and an unambiguous estimate of the electromagnetic SERS enhancement factor of ≈104 is obtained by direct scanning electron microscopy imaging of QDs responsible for the Raman signal. Much stronger enhancement of ≈108 is obtained at larger wavelengths for benzenethiol molecules penetrating the NP gaps.  相似文献   

19.
A hierarchically patterned metal/semiconductor (gold nanoparticles/ZnO nanowires) nanostructure with maximized photon trapping effects is fabricated via interference lithography (IL) for plasmon enhanced photo‐electrochemical water splitting in the visible region of light. Compared with unpatterned (plain) gold nanoparticles‐coated ZnO NWs (Au NPs/ZnO NWs), the hierarchically patterned Au NPs/ZnO NWs hybrid structures demonstrate higher and wider absorption bands of light leading to increased surface enhanced Raman scattering due to the light trapping effects achieved by the combination of two different nanostructure dimensions; furthermore, pronounced plasmonic enhancement of water splitting is verified in the hierarchically patterned Au NPs/ZnO NWs structures in the visible region. The excellent performance of the hierarchically patterned Au NPs/ZnO NWs indicates that the combination of pre‐determined two different dimensions has great potential for application in solar energy conversion, light emitting diodes, as well as SERS substrates and photoelectrodes for water splitting.  相似文献   

20.
A facile and economical route to preparation of highly ordered sliver pore or particle arrays with controlled pore‐shape and size extended over cm2 areas is described. The substrates are prepared at planar and curved surfaces via sphere‐imprinted polymer (PDMS) templating using polystyrene spheres with diameters of 820, 600, or 430 nm. Nano‐pore arrays are created by sputtering 80 nm of Ag directly onto the templates and nano‐particle arrays are prepared by electrode‐less deposition of Ag from Tollen's reagent. The shape of the nano‐pore or particles in the array conformed to that of the imprint of the sphere on the template. Stretching the flexible template enable creation of cuboid shaped nano‐voids and nano‐particles following Ag deposition. Diffuse reflectance from the spherical Ag nano‐cavity arrays showed absorbance maxima at wavelengths comparable similar to the diameter of the templating sphere, whereas reflectance from the cuboid arrays, showed little correlation with the sphere diameter. The cuboid nano‐particle arrays showed the most intense visible absorption which is red‐shifted compared to the spherical arrays. White light diffraction from the arrays, observed by rotating 1 cm2 substrates relative to a fixed light source, reflected exactly the symmetry axes of the periodic nano‐features in the arrays demonstrating the remarkable macroscopic order of the periodic structures. Raman spectra of 1‐benzenethiol adsorbed at the arrays indicated SERS enhancements from the substrates are attributed mainly to surface nano‐roughness with only moderate contributions from the periodically corrugated structures. Despite excitation at the major resonance dip in the reflectance spectrum, a weak, localized rim dipole mode is found to elicit a small increase in the SERS enhancement factor for the 430 nm diameter spherical arrays. FDTD studies of nano‐void arrays provided insights into v arious factors affecting the SERS experiment and confirmed the array's plasmonic spectra are dominated by propagating plasmon modes under microscope excitation/collection angles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号