首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The family of two‐dimensional (2D) metal carbides and nitrides, known as MXenes, are among the most promising electrode materials for supercapacitors thanks to their high metal‐like electrical conductivity and surface‐functional‐group‐enabled pseudocapacitance. A major drawback of these materials is, however, the low mechanical strength, which prevents their applications in lightweight, flexible electronics. A strategy of assembling freestanding and mechanically robust MXene (Ti3C2Tx ) nanocomposites with one‐dimensional (1D) cellulose nanofibrils (CNFs) from their stable colloidal dispersions is reported. The high aspect ratio of CNF (width of ≈3.5 nm and length reaching tens of micrometers) and their special interactions with MXene enable nanocomposites with high mechanical strength without sacrificing electrochemical performance. CNF loading up to 20%, for example, shows a remarkably high mechanical strength of 341 MPa (an order of magnitude higher than pristine MXene films of 29 MPa) while still maintaining a high capacitance of 298 F g?1 and a high conductivity of 295 S cm?1. It is also demonstrated that MXene/CNF hybrid dispersions can be used as inks to print flexible micro‐supercapacitors with precise dimensions. This work paves the way for fabrication of robust multifunctional MXene nanocomposites for printed and lightweight structural devices.  相似文献   

2.
Flexible planar micro‐supercapacitors (MSCs) with unique loose and porous nanofiber‐like electrode structures are fabricated by combining electrochemical deposition with inkjet printing. Benefiting from the resulting porous nanofiber‐like structures, the areal capacitance of the inkjet‐printed flexible planar MSCs is obviously enhanced to 46.6 mF cm?2, which is among the highest values ever reported for MSCs. The complicated fabrication process is successfully averted as compared with previously reported best‐performing planar MSCs. Besides excellent electrochemical performance, the resultant MSCs also show superior mechanical flexibility. The as‐fabricated MSCs can be highly bent to 180° 1000 times with the capacitance retention still up to 86.8%. Intriguingly, because of the remarkable patterning capability of inkjet printing, various modular MSCs in serial and in parallel can be directly and facilely inkjet‐printed without using external metal interconnects and tedious procedures. As a consequence, the electrochemical performance can be largely enhanced to better meet the demands of practical applications. Additionally, flexible serial MSCs with exquisite and aesthetic patterns are also inkjet‐printed, showing great potential in fashionable wearable electronics. The results suggest a feasible strategy for the facile and cost‐effective fabrication of high‐performance flexible MSCs via inkjet printing.  相似文献   

3.
Printed functional conductive inks have triggered scalable production of smart electronics such as energy-storage devices, antennas, wearable electronics, etc. Of particular interest are highly conductive-additive-free inks devoid of costly postdeposition treatments to eliminate sacrificial components. Due to the high filler concentration required, formulation of such waste-free inks has proven quite challenging. Here, additive-free, 2D titanium carbide MXene aqueous inks with appropriate rheological properties for scalable screen printing are demonstrated. Importantly, the inks consist essentially of the sediments of unetched precursor and multilayered MXene, which are usually discarded after delamination. Screen-printed structures are presented on paper with high resolution and spatial uniformity, including micro-supercapacitors, conductive tracks, integrated circuit paths, and others. It is revealed that the delaminated nanosheets among the layered particles function as efficient conductive binders, maintaining the mechanical integrity and thus the metallic conductive network. The areal capacitance (158 mF cm−2) and energy density (1.64 µWh cm−2) of the printed micro-supercapacitors are much superior to other devices based on MXene or graphene. The ink formulation strategy of “turning trash into treasure” for screen printing highlights the potential of waste-free MXene sediment printing for scalable and sustainable production of next-generation wearable smart electronics.  相似文献   

4.
Fiber‐shaped supercapacitors (FSCs) are promising energy storage solutions for powering miniaturized or wearable electronics. However, the scalable fabrication of fiber electrodes with high electrical conductivity and excellent energy storage performance for use in FSCs remains a challenge. Here, an easily scalable one‐step wet‐spinning approach is reported to fabricate highly conductive fibers using hybrid formulations of Ti3C2Tx MXene nanosheets and poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate. This approach produces fibers with a record conductivity of ≈1489 S cm?1, which is about five times higher than other reported Ti3C2Tx MXene‐based fibers (up to ≈290 S cm?1). The hybrid fiber at ≈70 wt% MXene shows a high volumetric capacitance (≈614.5 F cm?3 at 5 mV s?1) and an excellent rate performance (≈375.2 F cm?3 at 1000 mV s?1). When assembled into a free‐standing FSC, the energy and power densities of the device reach ≈7.13 Wh cm?3 and ≈8249 mW cm?3, respectively. The excellent strength and flexibility of the hybrid fibers allow them to be wrapped on a silicone elastomer fiber to achieve an elastic FSC with 96% capacitance retention when cyclically stretched to 100% strain. This work demonstrates the potential of MXene‐based fiber electrodes and their scalable production for fiber‐based energy storage applications.  相似文献   

5.
Self-powered integrated sensor with high-sensitivity physiological signals detection is indispensable for next-generation wearable electronic devices. Herein, a Ti3C2Tx/CNTs-based self-powered resistive sensor with solar cells and in-plane micro-supercapacitors (MSCs) is successfully realized on a flexible styrene–ethylene/butylene–styrene (SEBS) electrospinning film. The prepared Ti3C2Tx/CNTs@SEBS/CNTs nanofiber membranes exhibit high electrical conductivity and mechanical flexibility. The laser-assisted fabricated Ti3C2Tx/CNTs based-MSCs demonstrate a high areal energy density of 52.89 and 9.56 µWh cm−2 with a corresponding areal power density of 0.2 and 4 mW cm−2. Additionally, the MSCs exhibit remarkable capacity retention of 90.62% after 10 000 cycles. Furthermore, the Ti3C2Tx/CNTs based-sensor exhibits real-time detection capability for human facial micro-expressions and pulse single under physiological conditions. The repeated bending/release tests indicate the long-time cycle stability of the Ti3C2Tx/CNTs based-sensor. Owing to the excellent sensing performance, the sensing array was also fabricated. It is believed that this work develops a route for designing a self-powered sensor system with flexible production, high performance, and human-friendly characteristics for wearable electronics.  相似文献   

6.
Free-standing films that display high strength and high electrical conductivity are critical for flexible electronics, such as electromagnetic interference (EMI) shielding coatings and current collectors for batteries and supercapacitors. 2D Ti3C2Tx flakes are ideal candidates for making conductive films due to their high strength and metallic conductivity. It is, however, challenging to transfer those outstanding properties of single MXene flakes to macroscale films as a result of the small flake size and relatively poor flake alignment that occurs during solution-based processing. Here, a scalable method is shown for the fabrication of strong and highly conducting pure MXene films containing highly aligned large MXene flakes. These films demonstrate record tensile strength up to ≈570 MPa for a 940 nm thick film and electrical conductivity of ≈15 100 S cm−1 for a 214 nm thick film, which are both the highest values compared to previously reported pure Ti3C2Tx films. These films also exhibit outstanding EMI shielding performance (≈50 dB for a 940 nm thick film) that exceeds other synthetic materials with comparable thickness. MXene films with aligned flakes provide an effective route for producing large-area, high-strength, and high-electrical-conductivity MXene-based films for future electronic applications.  相似文献   

7.
2D transition‐metal carbides and nitrides, known as MXenes, have displayed promising properties in numerous applications, such as energy storage, electromagnetic interference shielding, and catalysis. Titanium carbide MXene (Ti3C2Tx ), in particular, has shown significant energy‐storage capability. However, previously, only micrometer‐thick, nontransparent films were studied. Here, highly transparent and conductive Ti3C2Tx films and their application as transparent, solid‐state supercapacitors are reported. Transparent films are fabricated via spin‐casting of Ti3C2Tx nanosheet colloidal solutions, followed by vacuum annealing at 200 °C. Films with transmittance of 93% (≈4 nm) and 29% (≈88 nm) demonstrate DC conductivity of ≈5736 and ≈9880 S cm?1, respectively. Such highly transparent, conductive Ti3C2Tx films display impressive volumetric capacitance (676 F cm?3) combined with fast response. Transparent solid‐state, asymmetric supercapacitors (72% transmittance) based on Ti3C2Tx and single‐walled carbon nanotube (SWCNT) films are also fabricated. These electrodes exhibit high capacitance (1.6 mF cm?2) and energy density (0.05 µW h cm?2), and long lifetime (no capacitance decay over 20 000 cycles), exceeding that of graphene or SWCNT‐based transparent supercapacitor devices. Collectively, the Ti3C2Tx films are among the state‐of‐the‐art for future transparent, conductive, capacitive electrodes, and translate into technologically viable devices for next‐generation wearable, portable electronics.  相似文献   

8.
A titanium carbide (Ti3C2Tx) MXene is employed as an efficient solid support to host a nitrogen (N) and sulfur (S) coordinated ruthenium single atom (RuSA) catalyst, which displays superior activity toward the hydrogen evolution reaction (HER). X‐ray absorption fine structure spectroscopy and aberration corrected scanning transmission electron microscopy reveal the atomic dispersion of Ru on the Ti3C2Tx MXene support and the successful coordination of RuSA with the N and S species on the Ti3C2Tx MXene. The resultant RuSA‐N‐S‐Ti3C2Tx catalyst exhibits a low overpotential of 76 mV to achieve the current density of 10 mA cm?2. Furthermore, it is shown that integrating the RuSA‐N‐S‐Ti3C2Tx catalyst on n+np+‐Si photocathode enables photoelectrochemical hydrogen production with exceptionally high photocurrent density of 37.6 mA cm?2 that is higher than the reported precious Pt and other noble metals catalysts coupled to Si photocathodes. Density functional theory calculations suggest that RuSA coordinated with N and S sites on the Ti3C2Tx MXene support is the origin of this enhanced HER activity. This work would extend the possibility of using the MXene family as a solid support for the rational design of various single atom catalysts.  相似文献   

9.
Yang  Jie  Li  Hui  Cheng  Jianli  He  Tao  Li  Jinshan  Wang  Bin 《Journal of Materials Science》2021,56(24):13859-13873

The advent of smart and wearable electronics endows flexible pressure sensors with promising potentiality. Ti3C2Tx-based MXene is considered as one of attractive sensing materials for its metallic conductivity and adjustable interlayer. However, existing flexible MXene pressure sensor still requires a technical breakthrough that simultaneously possessing high sensitivity, fast response, and durability in low-pressure regime and excellent mechanical strength. Herein, a Ti3C2Tx-based pressure sensor with distinctly enhanced sensing functionality and mechanical strength is demonstrated though inserting high-strength of bacterial cellulose nanofibers to control the interlayer of MXene. By optimizing the bacterial cellulose content and MXene interlayer space, the resultant sensor device exhibits high mechanical strength (225 MPa), wide-sensing range with low detective limit (0.4 Pa), high sensitivity (up to 95.2 kPa?1, in < 50 Pa region), fast response (95 ms) and outperformed repeatability (25,000 cycles), as well as low operation voltage of 0.1 V. For practical application demos, the sensor can monitor multiple human biologic activities, including subtle pressures (e.g., swallow, heartbeat and pulse), acoustic vibrations and gesture motions, and serve as electronic skin for mapping pressure distribution, elucidating the potential application in medical diagnosis, smart robotics and human-machine interfacing.

  相似文献   

10.
MXenes comprise a new class of 2D transition metal carbides, nitrides, and carbonitrides that exhibit unique light–matter interactions. Recently, 2D Ti3CNTx (Tx represents functional groups such as ? OH and ? F) was found to exhibit nonlinear saturable absorption (SA) or increased transmittance at higher light fluences, which is useful for mode locking in fiber‐based femtosecond lasers. However, the fundamental origin and thickness dependence of SA behavior in MXenes remain to be understood. 2D Ti3C2Tx thin films of different thicknesses are fabricated using an interfacial film formation technique to systematically study their nonlinear optical properties. Using the open aperture Z‐scan method, it is found that the SA behavior in Ti3C2Tx MXene arises from plasmon‐induced increase in the ground state absorption at photon energies above the threshold for free carrier oscillations. The saturation fluence and modulation depth of Ti3C2Tx MXene is observed to be dependent on the film thickness. Unlike other 2D materials, Ti3C2Tx is found to show higher threshold for light‐induced damage with up to 50% increase in nonlinear transmittance. Lastly, building on the SA behavior of Ti3C2Tx MXenes, a Ti3C2Tx MXene‐based photonic diode that breaks time‐reversal symmetry to achieve nonreciprocal transmission of nanosecond laser pulses is demonstrated.  相似文献   

11.
Ti3C2Tx, a typical representative among the emerging family of 2D layered transition metal carbides and/or nitrides referred to as MXenes, has exhibited multiple advantages including metallic conductivity, a plastic layer structure, small band gaps, and the hydrophilic nature of its functionalized surface. As a result, this 2D material is intensively investigated for application in the energy storage field. The composition, morphology and texture, surface chemistry, and structural configuration of Ti3C2Tx directly influence its electrochemical performance, e.g., the use of a well‐designed 2D Ti3C2Tx as a rechargeable battery anode has significantly enhanced battery performance by providing more chemically active interfaces, shortened ion‐diffusion lengths, and improved in‐plane carrier/charge‐transport kinetics. Some recent progresses of Ti3C2Tx MXene are achieved in energy storage. This Review summarizes recent advances in the synthesis and electrochemical energy storage applications of Ti3C2Tx MXene including supercapacitors, lithium‐ion batteries, sodium‐ion batteries, and lithium–sulfur batteries. The current opportunities and future challenges of Ti3C2Tx MXene are addressed for energy‐storage devices. This Review seeks to provide a rational and in‐depth understanding of the relation between the electrochemical performance and the nanostructural/chemical composition of Ti3C2Tx, which will promote the further development of 2D MXenes in energy‐storage applications.  相似文献   

12.
High-entropy oxides (HEO) have recently concerned interest as the most promising electrocatalytic materials for oxygen evolution reactions (OER). In this work, a new strategy to the synthesis of HEO nanostructures on Ti3C2Tx MXene via rapid microwave heating and subsequent calcination at a low temperature is reported. Furthermore, the influence of HEO loading on Ti3C2Tx MXene is investigated toward OER performance with and without visible-light illumination in an alkaline medium. The obtained HEO/Ti3C2Tx-0.5 hybrid exhibited an outstanding photoelectrochemical OER ability with a low overpotential of 331 mV at 10 mA cm−2 and a small Tafel slope of 71 mV dec−1, which exceeded that of a commercial IrO2 catalyst (340 mV at 10 mA cm−2). In particular, the fabricated water electrolyzer with the HEO/Ti3C2Tx-0.5 hybrid as anode required a less potential of 1.62 V at 10 mA cm−2 under visible-light illumination. Owing to the strong synergistic interaction between the HEO and Ti3C2Tx MXene, the HEO/Ti3C2Tx hybrid has a great electrochemical surface area, many metal active sites, high conductivity, and fast reaction kinetics, resulting in an excellent OER performance. This study offers an efficient strategy for synthesizing HEO-based materials with high OER performance to produce high-value hydrogen fuel.  相似文献   

13.
The environmental stability of 2D MXene flakes must be systematically studied before their further application. Herein, the colloidal dispersibility and photochemical stability of delaminated Ti3C2Tx MXene flakes modified with hydrazine (HMH) and KOH and with water as the control (HMH‐Ti3C2, KOH‐Ti3C2, and H2O‐Ti3C2, respectively) are experimentally and theoretically studied. Modification greatly increases the dispersibility of Ti3C2Tx flakes. Their critical coagulation concentrations are 28.7, 106, and 49.1 mm NaCl, and their Hamaker constants are 23.7 × 10?21, 19.1 × 10?21, and 37.7 × 10?21 J, respectively; the colloidal interaction follows the classical Derjaguin–Landau–Verwey–Overbeek theory. HMH‐Ti3C2 and KOH‐Ti3C2 exhibit higher photochemical stability, as indicated by their stronger resistance to oxidation under UV and visible light irradiation. Changes in their physicochemical properties and the generation of reactive oxygen species (ROS) are assayed. Spin‐polarized density functional theory calculations and molecular dynamics simulations are used to determine the mechanisms underlying the differences in the photochemical stability of Ti3C2Tx flakes. K+ ions protect the flakes from oxidation by acting as a middle layer to reduce the coupling between Ti3+ and ROS, while HMH provides stronger protection by absorbing photoelectrons or reacting with ROS. These findings provide new insight into the environmental transformation and design of functional MXenes.  相似文献   

14.
2D titanium carbide (Ti3C2Tx MXene) is recognized as a promising material for pseudocapacitor electrodes in acidic solutions, while the current studies in neutral electrolytes show much poorer performances. By a simple hydrothermal method, vanadium‐doped Ti3C2Tx 2D nanosheets are prepared to tune the interaction between MXene and alkali metal adsorbates (Li+, Na+, and K+) in the neutral electrolyte. Maintaining the 2D morphology of MXene, the coexisting V3+ and V4+ are confirmed to form surface V–C and V–O species. At a medium doping level of V:Ti = 0.17:1, the V‐doped MXene exhibits the highest capacitance of 365.9 F g?1 in 2 m KCl (10 mV s?1) and excellent stability (5% loss after 5000 cycles), compared to only 115.7 F g?1 of pristine MXene. Density functional theory calculations reveal the stronger alkali metal ion–O interaction on V‐doped MXene surface than unmodified MXene and a further capacitance boost to 404.9 F g?1 using Li+‐containing neutral electrolyte is reported, which is comparable to the performance under acidic conditions.  相似文献   

15.
Two‐dimensional (2D) materials have attracted extensive research interest in academia due to their excellent electrochemical properties and broad application prospects. Among them, 2D transition metal carbides (Ti3C2Tx) show semiconductor characteristics and are studied widely. However, there are few academic reports on the use of 2D MXene materials as memristors. In this work, reported is a memristor based on MXene Ti3C2Tx flakes. After electroforming, Al/Ti3C2Tx/Pt devices exhibit repeatable resistive switching (RS) behavior. More interestingly, the resistance of this device can be continuously modulated under the pulse sequence with 10 ns pulse width, and the pulse width of 10 ns is much lower than that in other reported work. Moreover, on the nanosecond scale, the transition from short‐term plasticity to long‐term plasticity is achieved. These two properties indicate that this device is favorable for ultrafast biological synapse applications and high‐efficiency training of neural networks. Through the exploration of the microstructure, Ti vacancies and partial oxidation are proposed as the origins of the physical mechanism of RS behavior. This work reveals that 2D MXene Ti3C2Tx flakes have excellent potential for use in memristor devices, which may open the door for more functions and applications.  相似文献   

16.

Environment friendly electromagnetic interference (EMI) shielding materials with excellent EMI-shielding efficiency (SE) are urgently required to deal with the increasing electromagnetic wave and environmental pollution. In this work, biodegradable poly(lactic acid) (PLA)/carbon nanotubes (CNTs)/Ti3C2Tx MXene nanocomposites are prepared via co-coagulation and compression molding techniques. The distribution state of Ti3C2Tx MXene or CNTs, the excellent conductivity and EMI-shielding properties of the nanocomposites are confirmed by scanning electron microscopy (SEM), four-probe conductivity tester and vector network analyzer, respectively. The PLA/CNTs/Ti3C2Tx nanocomposites show efficient EMI SE of 24.4 dB for 7 wt% CNTs/8 wt% Ti3C2Tx at the thickness of 0.5 mm. By increasing the thickness of the film, the EMI SE of PLA/CNTs/Ti3C2Tx nanocomposites can be increased to 39.6 dB at 1.9 mm, nearly 99.989% of electromagnetic wave is shielded. The EM wave reflection is the main shielding mechanism of the PLA/CNTs/Ti3C2Tx nanocomposites. Considering future environmental issues, this work provides a novel way for fabricating MXene-based biodegradable EMI shielding materials.

  相似文献   

17.
The Ti3C2Tx film with metallic conductivity and high pseudo-capacitance holds profound promise in flexible high-rate supercapacitors. However, the restacking of Ti3C2Tx sheets hinders ion access to thick film electrodes. Herein, a mild yet green route has been developed to partially oxidize Ti3C2Tx to TiO2/Ti3C2Tx by introducing O2 molecules during refluxing the Ti3C2Tx suspension. The subsequent etching away of these TiO2 nanoparticles by HF leaves behind numerous in-plane nanopores on the Ti3C2Tx sheets. Electrochemical impedance spectroscopy shows that longer oxidation time of 40 min yields holey Ti3C2Tx (H-Ti3C2Tx) with a much shorter relax time constant of 0.85 s at electrode thickness of 25 µm, which is 89 times smaller than that of the pristineTi3C2Tx film (75.58 s). Meanwhile, H-Ti3C2Tx film with 25 min oxidation exhibits less-dependent capacitive performance in film thickness range of 10–84 µm (1.63–6.41 mg cm−2) and maintains around 60% capacitance as the current density increases from 1 to 50 A g−1. The findings clearly demonstrate that in-plane nanopores not only provide more electrochemically active sites, but also offer numerous pathways for rapid ion impregnation across the thick Ti3C2Tx film. The method reported herein would pave way for fabricating porous MXene materials toward high-rate flexible supercapacitor applications.  相似文献   

18.
Miniaturization of electronics demands electromagnetic interference (EMI) shielding of nanoscale dimension. The authors report a systematic exploration of EMI shielding behavior of 2D Ti3C2Tx MXene assembled films over a broad range of film thicknesses, monolayer by monolayer. Theoretical models are used to explain the shielding mechanism below skin depth, where multiple reflection becomes significant, along with the surface reflection and bulk absorption of electromagnetic radiation. While a monolayer assembled film offers ≈20% shielding of electromagnetic waves, a 24-layer film of ≈55 nm thickness demonstrates 99% shielding (20 dB), revealing an extraordinarily large absolute shielding effectiveness (3.89 × 106 dB cm2 g−1). This remarkable performance of nanometer-thin solution processable MXene proposes a paradigm shift in shielding of lightweight, portable, and compact next-generation electronic devices.  相似文献   

19.
The use of organic/inorganic composite inks in the Drop on Demand inkjet printing technology is a promising as well as demanding approach for the fabrication of composite thick films. Therefore, a versatile ceramic/polymer composite ink system for inkjet printing is developed in this study, containing Ba0.6Sr0.4TiO3 (BST) and poly(methyl methacrylate) (PMMA). When developing such inks suitable for a one‐step fabrication, the major challenge is to fulfill the requirements of the inkjet printing technology and to obtain homogeneous surface morphologies after drying. Thus, possible influencing factors like the solvent composition, the solids content, and the ratio of ceramic to polymer are investigated to obtain a detailed knowledge for the general ink development. The fluid mechanical properties, viscosity, density, and surface tension are characterized. The main focus of this study lies on the drying behavior of the different inks, with the interactions of the ceramic particles, and the dissolved polymer molecules being highlighted. Furthermore, the drying behavior depending on the ink composition is shown. This study provides new insights into the possibility of using composite inks for the inkjet printing process and the fabrication of printed composite thick films in a single process step.
  相似文献   

20.
Electrochemical capacitors (ECs) that store charge based on the pseudocapacitive mechanism combine high energy densities with high power densities and rate capabilities. 2D transition metal carbides (MXenes) have been recently introduced as high‐rate pseudocapacitive materials with ultrahigh areal and volumetric capacitances. So far, 20 different MXene compositions have been synthesized and many more are theoretically predicted. However, since most MXenes are chemically unstable in their 2D forms, to date only one MXene composition, Ti3C2Tx, has shown stable pseudocapacitive charge storage. Here, a cation‐driven assembly process is demonstrated to fabricate highly stable and flexible multilayered films of V2CTx and Ti2CTx MXenes from their chemically unstable delaminated single‐layer flakes. The electrochemical performance of electrodes fabricated using assembled V2CTx flakes surpasses Ti3C2Tx in various aqueous electrolytes. These electrodes show specific capacitances as high as 1315 F cm?3 and retain ≈77% of their initial capacitance after one million charge/discharge cycles, an unprecedented performance for pseudocapacitive materials. This work opens a new venue for future development of high‐performance supercapacitor electrodes using a variety of 2D materials as building blocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号