首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanical properties of flyash‐filled natural rubber were investigated and compared with those filled with calcium carbonate. A number of composites with varying percentage of the fillers were prepared using a two‐roll mill and molded on compression molding press. Specimens were subjected to mechanical testing. The properties studied were tensile strength, modulus at various elongations, hardness, density, etc. From the results it was observed that flyash‐filled composites were better in mechanical properties compared to those filled with calcium carbonate. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 995–1001, 2002  相似文献   

2.
(3-Aminopropyl)triethoxysilane treated La(2−x)/3Na0.06TiO3 (x = 0.06) (LNT) microparticles filled polyetheretherketone (PEEK) composites were prepared using hot pressing process. The effects of variation of LNT ceramic filling fraction on dielectric properties, water absorption, thermal stability and mechanical strength were investigated. All composites demonstrate low water absorption (less than 0.4%) when the ceramic filling fraction is lower than 0.6Vf. The obtained composites exhibited dielectric permittivities varying from ~4 to ~22 as the ceramic fillers increased from 0.1 to 0.8Vf and low losses (~10−4 @1 MHz, 3~5 × 10−3 at the frequencies of microwave (10 GHz) and millimeter wave (29-50 GHz), respectively). The mechanical strength, dimensional and dielectric thermal stability of the composite are remarkably improved by the addition of LNT ceramic fillers. A composite with near zero temperature coefficients of dielectric permittivity or resonant frequency and flexural strength of ~140 MPa could be obtained. The out-of-plane coefficient of thermal expansion (CTE) could be reduced to ~20 ppm/°C as the ceramic filler loading reached 0.7Vf.  相似文献   

3.
In this work, hybrid fillers consist of modified silica (SiO2) and multiwalled carbon nanotube (MWCNT) were used to improve the mechanical, dielectric, and thermal properties of fluorosilicone (FSR) composites via a direct mechanical mixing method. With the increase of CNT loading in SiO2/CNT hybrid loading ratio, the tensile properties, dielectric constant, electrical conductivity, and thermal properties all increase without a sharp sacrifice of flexibility. The dielectric constant of FSR-S15/C5 achieved 7,370 @1 kHz, which is about four orders of the FSR-S20, and the dielectric loss remains as low as 0.676 @1 kHz. Therefore, the linkage of SiO2 and FSR chains not only enhances the interfacial interaction between the fillers and FSR matrix but also decreases the agglomeration of the fillers in matrix. What is more, modified SiO2 and CNT were designed as the effective hybrid filler to improve the performance of the polymeric matrix through synergic effect.  相似文献   

4.
Fine particles of barium ferrite (BaFe12O19) were synthesized by the conventional ceramic technique. These materials were then characterized by the X‐ray diffraction method and incorporated in the natural rubber matrix according to a specific receipe for various loadings of ferrite. The rubber ferrite composites (RFC) thus obtained have several applications, and have the advantage of molding into complex shapes. For applications such as microwave absorbers, these composites should have an appropriate dielectric strength with the required mechanical and magnetic properties. The N330 (HAF) carbon black has been added to these RFCs for various loadings to modify the dielectric and mechanical properties. In this article we report the effect of carbon black on the mechanical and dielectric properties of these RFCs. Both the mechanical and dielectric properties can be enhanced by the addition of an appropriate amount of carbon black. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 769–778, 2003  相似文献   

5.
The effects of five different types of fillers on the thermal and mechanical properties of hydroxyl-terminated polybutadiene-based polyurethane elastomers were explored to develop a filled polyurethane elastomeric liner for rocket motors with hydroxyl-terminated polybutadiene-based composite propellants. Two type of carbon black, silica, aluminum oxide, and zirconium(III) oxide were used as filler. Based on the improvement in the tensile properties and the erosion resistance achieved in the first part of the study, an ISAF-type carbon black was selected to be used as the main filler in combination with an additional filler. The second part involves the investigation of polyurethane elastomers containing a second filler in various amounts in addition to the ISAF-type carbon black used as the main filler. In addition to the thermal and mechanical properties, the processability of the uncured polyurethane mixtures were also explored by measuring the viscosity in this second part of the study. The studied fillers do not considerbly change the thermal degradation temperatures and the thermal conductivity of the polyurethane elastomers with a filler content up to 16 wt %. The best improvement in the erosion resistance and tensile strength of the polyurethane elastomers with additional fillers is also achieved when filled with the ISAF-type carbon black, whereas the use of zirconium(III) oxide as additional filler provides almost no improvement in these properties. Viscosity of the uncured polyurethane mixtures increases with the increasing filler content and with the decreasing particle size of the filler. Aluminum oxide-filled elastomers seem to be the most suitable compositions having sufficiently high thermal and mechanical properties, together with the processability of uncured mixtures. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1057–1065, 1998  相似文献   

6.
The dielectric and mechanical properties of polystyrene(PS)/acrylonitrile–butadiene rubber (NBR) blends were studied with the aim of improving the insulation properties of NBR. Compatibility investigations, performed with viscosity and dielectric methods and confirmed with the calculated heat of mixing, indicated that such blends were incompatible. To overcome the problem of phase separation between NBR and PS, we chose epoxidized soya bean oil to act as a compatibilizer and added 3% to the blends under investigation. This led to the conclusion that a sample containing 10% PS (either pure or scrap) possessed the most suitable electrical and mechanical properties. For this reason, the sample was chosen for studying the effect of the addition of three types of fillers (quartz, talc, and calcium carbonate) in increasing quantities (up to 80 phr) on the dielectric and mechanical properties. The variation of the dielectric properties with temperature (20–60°C) was also investigated. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 540–552, 2002  相似文献   

7.
Conventional polymer blending has a shortcoming in conductivity characteristic. This research addresses the preparation of conductive thermoplastic natural rubber (TPNR) blends with graphene nanoplates (GNPs)/polyaniline (PANI) through melt blending using an internal mixer. The effect of PANI content (10, 20, 30, and 40 wt %) on the mechanical and thermal properties, thermal and electrical conductivities, and morphology observation of the TPNR/GNPs/PANI nanocomposites was investigated. The results showed that the tensile and impact properties as well as thermal conductivity of nanocomposite had improved with the incorporation of 3 wt % of GNPs and 20 wt % of PANI as compared to neat TPNR and reduced with further increase of the PANI content. It was observed that the GNPs and PANI acted as a critical component to improve the thermal stability and electrical conductivity of the TPNR/GNPs/PANI nanocomposites. The most improved conductivity of 5.22 E-5 S/cm was observed at 3 wt % GNPs and 40 wt % PANI. Variable-pressure scanning electron microscopy micrograph revealed the good interaction and distribution of GNPs and PANI within TPNR matrix at PANI loadings lower than 30 wt %. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48873.  相似文献   

8.
We studied the effects of fillers on the mechanical, dynamic mechanical, and aging properties of rubber–plastic binary and ternary blends derived from acrylic rubber, fluorocarbon rubber, and multifunctional acrylates. The addition of fillers, such as carbon black and silica, changed the nature of the stress–deformation behavior with a higher stress level for a given strain. The tensile and tear strengths increased with the addition of the fillers and with loading, but the elongation at break decreased, and the tension set remained unaffected. The aging properties of carbon‐black‐filled blends were better because of the thermal antioxidant nature of carbon black. The swelling resistance of the binary and the ternary blends in methyl ethyl ketone increased with the incorporation of fillers. From dynamic mechanical thermal analysis, we concluded that the filler altered the height and half‐width of the damping peak at the glass‐transition temperatures. There was little change in the loss tangent values at higher temperatures. A higher loading of the filler increased the storage modulus at all of the temperatures measured. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 278–286, 2003  相似文献   

9.
Intercalated polyoxymethylene (POM)/molybdenum disulfide (MoS2) nanocomposites were prepared by in situ intercalation/polymerization. The structures of the composites were characterized by means of powder X‐ray diffraction (XRD) and transmission electron microscopy. The XRD pattern showed that the polymer was inserted into the MoS2 galleries. The interlayer spacing of the intercalated phase increased from 6.15 to 11.18 Å. The thermal behavior of the composites was also investigated through thermogravimetric analysis. The results show that the heat resistance of the intercalated composites decreased slightly. The tribological behavior of POM/MoS2 was investigated on an MQ‐800 end‐face tirbometer under dry friction. The worn surfaces were observed by scanning electron microscopy. The results show that POM/MoS2 presented better friction reduction and wear resistance, especially under high load. The friction mechanism of the nanocomposites is also discussed in association with X‐ray photoelectron spectroscopy. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
11.
Mullite/glass/nano aluminum nitride (AlN) filler (1–10 wt% AlN) composites were successfully fabricated for the low-temperature co-fired ceramics applications that require densification temperatures lower than 950°C, high thermal conductivity to dissipate heat and thermal expansion coefficient matched to Si for reliability, and low dielectric constant for high signal transmission speed. Densification temperatures were ≤825°C for all composites due to the viscous sintering of the glass matrix. X-ray diffraction proved that AlN neither chemically reacted with other phases nor decomposed with temperature. The number of closed pores increased with the AlN content, which limited the property improvement expected. A dense mullite/glass/AlN (10 wt%) composite had a thermal expansion coefficient of 4.44 ppm/°C between 25 and 300°C, thermal conductivity of 1.76 W/m.K at 25°C, dielectric constant (loss) of 6.42 (0.0017) at 5 MHz, flexural strength of 88 MPa and elastic modulus of 82 GPa, that are comparable to the commercial low temperature co-fired ceramics products.  相似文献   

12.
A series of hyperbranched polysiloxane (HBPSi)-based hyperbranched polyimide (HBPI) films with low dielectric permittivity and multiple branched structures are fabricated by copolymerizing 2,4,6-triaminopyrimidine (TAP) with 4,4′-(hexafluoroisopropylidene)diphthalic anhydride, 4,4′-diaminodiphenyl ether, and HBPSi via the two-step polymerization method. The dielectric permittivity of HBPSi hyperbranched polyimide films decreases with increasing TAP fraction, namely, from 3.28 for sample PI-1 to 2.80 for PI-4, mainly owing to the enlarged free volume created by the incorporation of multiple branched structures. Moreover, HBPSi HBPI possesses desirable solubility and good mechanical properties and thermal stability. PI-4 not only has low dielectric permittivity (2.80, 1 MHz), excellent solubility (soluble in several common organic solvents), and remarkable thermal properties (glass-transition temperature of 273 °C, 5% weight loss temperature of 498 °C in N2 and 486 °C in O2), but it also demonstrates admirable mechanical properties with a tensile strength of 103 MPa, elongation at break of 7.3%, and a tensile modulus of 2.16 GPa. HBPSi HBPI might have potential applications in interlayer dielectrics and other microelectronics fields. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47771.  相似文献   

13.
To improve the thermal and mechanical properties of liquid silicone rubber (LSR) for application, the graphene oxide (GO) was proposed to reinforce the LSR. The GO was functionalized with triethoxyvinylsilane (TEVS) by dehydration reaction to improve the dispersion and compatibility in the matrix. The structure of the functionalized graphene oxide (TEVS‐GO) was evaluated by Thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectra, X‐ray diffraction (XRD), and energy dispersive X‐ray spectroscopy (EDX). It was found that the TEVS was successfully grafted on the surface of GO. The TEVS‐GO/LSR composites were prepared via in situ polymerization. The structure of the composites was verified by FTIR, XRD, and scanning electron microscopy (SEM). The thermal properties of the composites were characterized by TGA and thermal conductivity. The results showed that the 10% weight loss temperature (T10) increased 16.0°C with only 0.3 wt % addition of TEVS‐GO and the thermal conductivity possessed a two‐fold increase, compared to the pure LSR. Furthermore, the mechanical properties were studied and results revealed that the TEVS‐GO/LSR composites with 0.3 wt % TEVS‐GO displayed a 2.3‐fold increase in tensile strength, a 2.79‐fold enhancement in tear strength, and a 1.97‐fold reinforcement in shear strength compared with the neat LSR. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42582.  相似文献   

14.
Microsized aluminum/epoxy resin composites were prepared, and the thermal and dielectric properties of the composites were investigated in terms of composition, aluminum particle sizes, frequency, and temperature. The results showed that the introduction of aluminum particles to the composites hardly influenced the thermal stability behavior, and decreased Tg of the epoxy resin; moreover, the size, concentration, and surface modification of aluminum particles had an effect on their thermal conductivity and dielectric properties. The dielectric permittivity increased smoothly with a rise of aluminum particle content, as well as with a decrease in frequency at high loading with aluminum particles. While the dissipation factor value increased slightly with an increase in frequency, it still remained at a low level. The dielectric permittivity and loss increased with temperature, owing to the segmental mobility of the polymer molecules. We found that the aluminum/epoxy composite containing 48 vol % aluminum‐particle content possessed a high thermal conductivity and a high dielectric permittivity, but a low loss factor, a low electric conductivity, and a higher breakdown voltage. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
The mechanical properties and aging characteristics of blends of ethylene propylene diene monomer (EPDM) rubber and styrene butadiene rubber (SBR) were investigated with special reference to the effect of blend ratio and cross‐linking systems. Among the blends, the one with 80/20 EPDM/SBR has been found to exhibit the highest tensile, tear, and abrasion properties at ambient temperature. The observed changes in the mechanical properties of the blends have been correlated with the phase morphology, as attested by scanning electron micrographs (SEMs). The effects of three different cure systems, namely, sulfur (S), dicumyl peroxide (DCP), and a mixed system consisting of sulfur and peroxide (mixed) on the blend properties also were studied. The stress‐strain behavior, tensile strength, elongation at break, and tear strength of the blends were found to be better for the mixed system. The influence of fillers such as high‐abrasion furnace (HAF) black, general‐purpose furnace (GPF) black, silica, and clay on the mechanical properties of 90/10 EPDM/SBR blend was examined. The ozone and water aging studies also were conducted on the sulfur cured blends, to supplement the results from the mechanical properties investigation. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2606–2621, 2004  相似文献   

16.
Natural rubber latex was added to composite materials formulated from a quebracho tannin adhesive crosslinked with hexamethylenetetramine and wood flour as a reinforcing filler. The final microstructure of the thermoset modified by the addition of different concentrations of latex was observed by scanning electron microscopy. The flexural and impact behavior of the modified materials was analyzed and related to the final microstructure of the composites. The effect of exposing the materials to humid environments was also evaluated. The measurements indicated that the addition of latex did not significantly reduce water absorption. However, it facilitated the preparation process of samples with low filler contents because of the increased viscosity of the mixture, which inhibited particle settling. On the other hand, the flexural properties increased with the addition of latex‐containing proteins through a reaction similar to tanning in leathers. The impact properties presented a similar trend, with the largest change occurring between 0 and 5% natural rubber in the matrix formulation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

17.
Poly(arylene ether nitriles) (PEN) containing various contents of graphene nanosheets (GNs) was prepared via solution‐casting method and investigated for their dielectric, mechanical, thermal, and rheological properties. For PEN/GNs nanocomposite with 5 wt % GNs, the dielectric constant was increased to 9.0 compared with that of neat PEN (3.1) and dielectric losses of all nanocomposites were in the range of 0.019–0.023 at 1 kHz. The tensile modulus and strength were increased about 6 and 14% with 0.5% GNs, respectively. The fracture surfaces of the all PEN/GNs nanocomposites revealed that GNs had good adhesion to PEN matrix. The thermal properties of the nanocomposites showed significant increase with increasing GN loading. For 5 wt % GNs‐reinforced PEN nanocomposite, the temperatures corresponding to a weight loss of 5 wt % (Td5%) and 30 wt % (Td30%) increased by about 20 and 13°C, respectively. Rheological properties of the PEN nanocomposites showed a sudden change with the GN fraction and the percolation threshold was about 1 wt % of GNs. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
Possible use of ultra‐fine acrylonitrile butadiene rubber powder (UFNBRP) as a filler for natural rubber (NR) was investigated. The UFNBRP was added into NR at various concentrations, and the compound properties were determined. It is found that, with increasing UFNBRP loading, the compound viscosity is increased, whereas both scorch time and optimum curing time are significantly reduced. The results also reveal that UFNBRP has negative effect not only on crosslink density but also on most mechanical properties of the vulcanizate, such as tensile strength, tear strength, compression set, and abrasion resistance. The deterioration of these mechanical properties is thought to arise mainly from the combined effect of large phase size of the dispersed UFNBRP and low interfacial adhesion taking place from the polarity difference between UFNBRP and NR. Interestingly, it is found that, after aging, UFNBRP could promote postcuring phenomenon leading to increases of both relative 100% modulus and relative tensile strength. Oil resistance is also found to improve considerably with increasing UFNBRP loading. This improvement is mainly attributed to the dilution effect, i.e., the higher the UFNBRP loading, the lower the NR portion and, thus, the greater the oil resistance of the vulcanizate. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
The influence of two types of surface treatments (aminosilane and Lica‐12) on the mechanical and thermal properties of polypropylene (PP) filled with single and hybrid filler (silica and mica) was studied. An improvement in tensile properties and impact strength was found for both treatments compared to those of untreated composites. However, the filler with silane coupling agent showed better improvement compared to the filler with Lica‐12 coupling agent. This was due to better adhesion between filler and matrix. Thermal analysis indicates that surface treatments increased the nucleating ability of filler, but decreased the coefficient of thermal expansion of PP composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
In this work, hybrids of surface modified zinc oxide spherical (ZnOs) nanoparticles and tetrapod‐shaped whiskers (ZnOw) were incorporated into the silicon rubber (SR) to prepare the ZnOs/ZnOw/SR nanocomposites. The incorporation of the ZnOs/ZnOw facilitated the formation of three‐dimensional thermally conducting network. It was found that the thermal conductivity of the ZnOs/ZnOw/SR reached up to 1.309 W m?1 K?1 when the ZnOs/ZnOw content was 20 vol % (Vm‐ZnOs:VZnOw = 7:3), which was nearly 6.5 times that of the pristine SR. The dielectric and resistivity measurements showed that the incorporation of the ZnOs/ZnOw hybrids did not cause much change in the electrical properties. In addition, the results show that the tensile strength of ZnOs/ZnOw/SR nanocomposites is higher than that of pristine SR. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46454.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号