首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many important food bioactive compounds are plant secondary metabolites that have traditional applications for health promotion and disease prevention. However, the chemical instability and poor bioavailability of these compounds represent major challenges to researchers. In the last decade, therefore, major impetus has been given for the research and development of advanced carrier systems for the delivery of natural bioactive molecules. Among them, stimuli-responsive carriers hold great promise for simultaneously improving stability, bioavailability, and more importantly delivery and on-demand release of intact bioactive phytochemicals to target sites in response to certain stimuli or combination of them (e.g., pH, temperature, oxidant, enzyme, and irradiation) that would eventually enhance therapeutic outcomes and reduce side effects. Hybrid formulations (e.g., inorganic–organic complexes) and multi-stimuli-responsive formulations have demonstrated great potential for future studies. Therefore, this review systematically compiles and assesses the recent advances on the smart delivery of food bioactive compounds, particularly quercetin, curcumin, and resveratrol through stimuli-responsive carriers, and critically reviews their functionality, underlying triggered-release mechanism, and therapeutic potential. Finally, major limitations, contemporary challenges, and possible solutions/future research directions are highlighted. Much more research is needed to optimize the processing parameters of existing formulations and to develop novel ones for lead food bioactive compounds to facilitate their food and nutraceutical applications.  相似文献   

2.
铁蛋白(ferritin)是一种广泛存在于动物、植物和微生物中的多亚基笼形结构蛋白,具有调节体内铁代谢平衡的功能,同时可以保护细胞免受因各种环境胁迫而导致的细胞氧化损伤.近年来,随着研究的深入,铁蛋白独特的纳米笼形结构以及特殊的理化性质使其成为一种具有广泛应用前景的新型蛋白质纳米载体材料.文章对铁蛋白的分子结构和功能进...  相似文献   

3.
Mango (Mangifera indica L.) is a fruit plant of family Anacardiaceae, widely grown all over the world, and is a very popular fruit in the world market. Mango fruit is the second most traded tropical fruit and fifth in terms of production globally. Large quantities of mango processing coproducts are generated (peels and seeds), which usually are discarded as waste, yet are a potential source of fat, protein, carbohydrate, and certain bioactive compounds. Mango kernel is a remarkably rich source of macronutrients and micronutrients including calcium, potassium, magnesium, phosphorus, and vitamins A, E, K, and C. Phytochemicals with a notable therapeutic potential such as tocopherols, phytosterols, carotenoids, polyphenols (gallotannins, flavonols, benzophenone derivatives, mangiferin, homomangiferin, isomangiferin, anthocyanins, kaempferol, and quercetin), and phenolic acids (4‐caffeoylquinic acids, caffeic, coumaric, ellagic, gallic, and ferulic acid) are reported. The phytochemicals have high antioxidant, antimicrobial, anticancer, and, antiproliferation activities and could be used for food, cosmetic, and pharmaceutical applications. The nutritional composition of mango kernel constitutes 32.34% to 76.81% carbohydrate, 6% to 15.2% fat, 6.36% to 10.02% protein, 0.26% to 4.69% crude fiber, and 1.46% to 3.71% ash on a dry weight basis. The nutritional profile of the kernel suggests its usability as a food ingredient in the development of value‐added products such as mango kernel oil, mango kernel butter, mango kernel flour, and biofilms among other diverse products. This comprehensive systematic review explores mango kernel as a potential and novel food ingredient to meet the needs of a health‐conscious population. The review also provides a remedy to waste management and environmental pollution.  相似文献   

4.
《Journal of dairy science》2022,105(10):7959-7971
Milk proteins have received much awareness due to their bioactivity. However, their encapsulation functions have not attracted enough attention. Milk proteins as encapsulation walls can increase the bioavailability of bioactive compounds. As the benefits of bioactive compounds are critically determined by bioavailability, the effect of interactions between milk proteins and active substances is a critical topic. In the present review, we summarize the effects of milk proteins as encapsulation walls on the bioavailability of active substances with a special focus. The methods and mechanisms of interactions between milk proteins and active substances are also discussed. The evidence collected in the present review suggests that when active substances are encapsulated by milk proteins, the bioavailability of active substances can be significantly affected. This review also provides valuable guidelines for the use of milk protein-based microcarriers.  相似文献   

5.
6.
Food flavor is an important attribute of quality food, and it largely determines consumer food preference. Many food products exist as emulsions or experience emulsification during processing, and therefore, a good understanding of flavor release from emulsions is essential to design food with desirable flavor characteristics. Emulsions are biphasic systems, where flavor compounds are partitioning into different phases, and the releases can be modulated through different ways. Emulsion ingredients, such as oils, emulsifiers, thickening agents, can interact with flavor compounds, thus modifying the thermodynamic behavior of flavor compounds. Emulsion structures, including droplet size and size distribution, viscosity, interface thickness, etc., can influence flavor component partition and their diffusion in the emulsions, resulting in different release kinetics. When emulsions are consumed in the mouth, both emulsion ingredients and structures undergo significant changes, resulting in different flavor perception. Special design of emulsion structures in the water phase, oil phase, and interface provides emulsions with great potential as delivery systems to control flavor release in wider applications. This review provides an overview of the current understanding of flavor release from emulsions, and how emulsions can behave as delivery systems for flavor compounds to better design novel food products with enhanced sensorial and nutritional attributes.  相似文献   

7.
Due to its advantagessuch as ionic crosslinking, pH responsiveness, excellent biocompatibility, biodegradability and low price, alginate has become one of the most important natural polysaccharides extensively used in constructing desired delivery systems for food bioactive ingredients. In this review, the fundamental knowledge of alginate as a building block for construction of nutraceutical delivery systems is introduced. Then, various types of alginate-based nutraceutical delivery systems are classified and summarized. Furthermore, the future trends of alginate-based delivery systems are highlighted. Currently, alginate-based delivery systems include hydrogel, emulsion, emulsion-filled alginate hydrogel, nanoparticle, microparticle, core–shell particle, liposome, edible film, and aerogel. Although alginate has been widely used in the fabrication of food bioactive ingredient delivery systems, further efforts and improvements are still needed. For this purpose, the future perspectives of alginate-based delivery systems are discussed. The feasible research trends of alginate-based delivery systems include the development of novel large-scale commercial preparation technology, multifunctional delivery system based on alginate, alginate oligosaccharide-based delivery system and alginate-based oleogel. Overall, the objective of this review is to provide useful guidance for rational design and application of alginate-based nutraceutical delivery systems in the future.  相似文献   

8.
Creating proteins with novel functionality via the Maillard reaction: a review   总被引:13,自引:0,他引:13  
Proteins are widely utilized to add functional properties, such as gelling and emulsification to foods. These attributes depend on a number of factors such as molecular structure of the protein, the pH, and the composition of its chemical environment. There is substantial evidence to suggest that the functional properties of food proteins can be further improved by derivatization. Covalent bonding of proteins to polysaccharides and smaller reducing sugars via the Maillard reaction has been shown to alter the functionality of proteins without requiring the addition of chemical reagents. Establishment of a technologically feasible method for preparing the conjugates and optimization of the processing conditions, however, is needed to promote their development as functional food ingredients. This paper provides a state-of-the-art contribution to the impact of the Maillard reaction on protein functionality. It presents a deeper understanding of the influence of processing conditions and reactant formulation on improving desirable properties of proteins. In particular attention is given to how potential improvements could be achieved in the emulsifying, textural, and solubility properties of proteins to add value to commodity food ingredients. Elements that are considered to be critical to the design of functional Maillard conjugates are highlighted and suggestions proposed to facilitate progress in this area.  相似文献   

9.
Liposomes play a significant role in encapsulation of various bioactive compounds (BACs), including functional food ingredients to improve the stability of core. This technology can be used for promoting an effective application in functional food and nutraceuticals. Incorporation of traditional and emerging methods for the developments of liposome for loading BACs resulted in viable and stable liposome formulations for industrial applications. Thus, the advance technologies such as supercritical fluidic methods, microfluidization, ultrasonication with traditional methods are revisited. Liposomes loaded with plant and animal BACs have been introduced for functional food and nutraceutical applications. In general, application of liposome systems improves stability, delivery, and bioavailability of BACs in functional food systems and nutraceuticals. This review covers the current techniques and methodologies developed and practiced in liposomal preparation and application in functional foods.  相似文献   

10.
随着消费者对健康饮食的日益重视,具有保健作用的发酵果蔬汁相关产品引起了研究者的广泛关注。果蔬是微生物生长的理想基质,果蔬汁发酵后会产生丰富的营养物质和多种功能活性,因此实现了果蔬高值化利用,使得未来发酵果蔬汁系列产品有着广阔的应用市场。本文综述了果蔬汁的常见发酵方式,发酵后的生物活性成分、功能活性以及发酵对果蔬汁的品质改善作用,对发酵果蔬汁行业的发展具有一定的指导意义。  相似文献   

11.
The self‐assembled natural and synthetic polymers are booming. However, natural polymers obtained from native or modified carbohydrate polymers (CPs), such as celluloses, chitosan, glucans, gums, pectins, and starches, have had special attention as raw material in the manufacture of self‐assembled polymer composite materials having several forms: films, hydrogels, micelles, and particles. The easy manipulation of the architecture of the CPs, as well as their high availability in nature, low cost, and being sustainable and green polymers have been the main positive points in the use of them for different applications. CPs have been used as building blocks for composite structures, and their easy orientation and ordering has given rise to self‐assembled CPs (SCPs). These macromolecules have been little studied for food applications. Nonetheless, their research has grown mainly in the last 5 years as encapsulated food additive wall materials, food coatings, and edible films. The multifaceted properties (systems sensitive to pH, temperature, ionic strength, types of ions, mechanical force, and enzymes) of these devices are leading to the development of advanced food materials. This review article focused on the analysis of SCPs for food applications in order to encourage other research groups for their preparation and implementation.  相似文献   

12.
The market trend towards plant-based protein has seen a significant increase in the last decade. This trend has been projected to continue in the coming years because of the strong factors of sustainability and less environmental impact associated with the production of plant-based protein compared to animal, aside from other beneficial health claims and changes in consumers' dietary lifestyles. In order to meet market demand, there is a need to have plant-based protein ingredients that rival or have improved quality and functionality compared to the traditional animal protein ingredients they may replace. In this review article, we present a detailed and concise summary of the functionality challenges of some plant protein ingredients with associated physical, chemical, and biological processing techniques (traditional and emerging technologies) that have been attempted to enhance them. We cataloged the differences between several studies that seek to address the functionality challenges of selected plant-based protein ingredients without overtly commenting on a general technique that addresses the functionality of all plant-based protein ingredients. Additionally, we elucidated the chemistry behind some of these processing techniques and how they modify the protein structure for improved functionality. Although, many food industries are shifting away from chemical modification of proteins because of the demand for clean label product and the challenge of toxicity associated with scale-up of this technique, so physical and biological techniques are widely being adopted to produce a functional ingredient such as texturized vegetable proteins, hydrolyzed vegetable protein, clean label protein concentrates, de-flavored protein isolates, protein flour, and grits.  相似文献   

13.
Dairy products are one of the most important sources of biologically active proteins and peptides. The health-promoting functions of these peptides are related to their primary structure, which depends on the parent protein composition. A crucial issue in this field is the demonstration of a cause-effect relationship from the ingested protein form to the bioactive form in vivo. Intervention studies represent the gold standard in nutritional research; however, attention has increasingly been focused on the development of sophisticated in vitro models of digestion to elucidate the mechanism of action of dairy nutrients in a mechanistic way and significantly reduce the number of in vivo trials. On the other hand, the epithelial intestinal barrier is the first gate that actively interacts with digestion metabolites, making the intestinal cells the first target tissue of dairy nutrients and respective metabolites. An evolution of the in vitro digestion approach in the study of dairy proteins and derived bioactive compounds is the setup of combined in vitro digestion and cell culture models taking into consideration the endpoint to measure the target organism (e.g., animal, human) and the key concepts of bioaccessibility, bioavailability, and bioactivity. This review discusses the relevance and challenges of modeling digestion and the intestinal barrier, focusing on the implications for the modeling of dairy protein digestion for bioactivity evaluation.  相似文献   

14.
There is increasing worldwide demand for proteins of both animal and plant origin. However, animal proteins are expensive in terms of both market price and environmental impact. Among alternative plant proteins, sunflower seeds are particularly interesting in view of their widespread availability in areas where soy is not or only sparsely produced. Compared with other sources of vegetable proteins, sunflower seeds have been reported to have a low content of antinutritional factors. Although the absence of these factors is important, the functionality of the protein preparations will mainly determine their applicability. This review provides detailed information about sunflower seed composition and processing, including processes to remove phenolic compounds from meals. The main part of the review concerns the structure and functionality of the two major protein fractions, helianthinin and 2S albumins. Regarding functionality, emphasis is on solubility, thermal behaviour and surface activity. Protein structure and functionality are discussed as a function of extrinsic factors such as pH, ionic strength, temperature and the presence of other seed components, particularly chlorogenic acid. In addition, sunflower proteins are compared from a structural and functional point of view with other plant proteins, particularly soy proteins. Copyright © 2007 Society of Chemical Industry  相似文献   

15.
The demand for high-quality alternative food proteins has increased over the last few decades due to nutritional and environmental concerns, leading to the growing consumption of legumes such as common bean, chickpea, lentil, lupin, and pea. However, this has also increased the quantity of non-utilized byproducts (such as seed coats, pods, broken seeds, and wastewaters) that could be exploited as sources of ingredients and bioactive compounds in a circular economy. This review focuses on the incorporation of legume byproducts into foods when they are formulated as flours, protein/fiber or solid/liquid fractions, or biological extracts and uses an analytical approach to identify their nutritional, health-promoting, and techno-functional properties. Correlation-based network analysis of nutritional, technological, and sensory characteristics was used to explore the potential of legume byproducts in food products in a systematic manner. Flour is the most widely used legume-based food ingredient and is present at levels of 2%–30% in bakery products, but purified fractions and extracts should be investigated in more detail. Health beverages and vegan dressings with an extended shelf-life are promising applications thanks to the techno-functional features of legume byproducts (e.g., foaming and emulsifying behaviors) and the presence of polyphenols. A deeper exploration of eco-friendly processing techniques (e.g., fermentation and ohmic treatment) is necessary to improve the techno-functional properties of ingredients and the sensory characteristics of foods in a sustainable manner. The processing of legume byproducts combined with improved legume genetic resources could enhance the nutritional, functional, and technological properties of ingredients to ensure that legume-based foods achieve wider industrial and consumer acceptance.  相似文献   

16.
Carotenoids are lipophilic secondary plant compounds, and their consumption within fruits and vegetables has been positively correlated with a decreased risk of developing several chronic diseases. However, their bioavailability is often compromised due to incomplete release from the food matrix, poor solubility and potential degradation during digestion. In addition, carotenoids in food products are prone to oxidative degradation, not only lowering the nutritional value of the product but also triggering other quality deteriorative changes, such as formation of lipid pro-oxidants (free radicals), development of discolorations or off-flavor defects. Encapsulation refers to a physicochemical process, aiming to entrap an active substance in structurally engineered micro- or nano-systems, in order to develop an effective thermodynamical and physical barrier against deteriorative environmental conditions, such as water vapor, oxygen, light, enzymes or pH. In this context, encapsulation of carotenoids has shown to be a very effective strategy to improve their chemical stability under common processing conditions including storage. In addition, encapsulation may also enhance bioavailability (via influencing bioaccessibility and absorption) of lipophilic bioactives, via modulating their release kinetics from the carrier system, solubility and interfacial properties. In the present paper, it is aimed to present the state of the art of carotenoid microencapsulation in order to enhance storability and bioavailability alike.  相似文献   

17.
Several proteins and peptides that are released in vitro and/or in vivo from hen eggs are biologically active and have a variety of functional properties in humans beyond normal nutrition, for which extensive studies have been performed. This review focuses on their biological activities, including antihypertensive, antioxidant, antimicrobial, antiadhesive, immunomodulatory and antithrombotic activities and enhancement of mineral absorption. These proteins and peptides have been shown to regulate the nervous system, cardiovascular system, immune system and gastrointestinal system. The potential application and future directions of research on these bioactive peptides and proteins in the food industry are also addressed. © 2014 Society of Chemical Industry  相似文献   

18.
A spectrophotometric bioassay was used to screen selected food ingredients intended for development of functional foods designed to influence the growth of gut bacteria. Dose–response profiles displaying Δgrowth, the magnitude of deviation from growth of controls, were generated for probiotics Lactobacillus reuteri, Lactobacillus rhamnosus, Bifidobacterium lactis and pathogens Escherichia coli, Salmonella Typhimurium and Staphylococcus aureus. Ingredients were manuka honey UMF?20+(dose‐dependently increased probiotics and decreased pathogens); bee pollen (biphasic growth effects against all); Rosehips and BroccoSprouts® (increased all dose‐dependently); blackcurrant oil (little effect) and propolis (inhibited all strains). Ingredients were also bioassayed in pairs to assess desirable or undesirable synergistic interactions. Observed synergies included manuka honey (predominantly desirable); rosehips or BroccoSprouts® (desirable and undesirable); blackcurrant oil (desirable) and propolis (tended towards synergies reinforcing its antimicrobial effects), collectively revealing a complex web of interactions which varied by ingredient and bacterial strain. Manuka honey was particularly effective at influencing gut bacteria. The surprising frequency of undesirable synergistic interactions illustrates the importance of pre‐testing potential ingredient combinations intended for use in functional foods.  相似文献   

19.
Protein concentrate (PC) was prepared from eviscerated and mechanically deboned fish. The pulp was washed sequentially with 0.05 M NaCl and 4 g l?1 NaHCO3 solutions, with cold ethanol and then with hot (50 °C) ethanol. Subsequently, it was dried (40 °C) and ground to 60 mesh. Enzyme (Flavourzime®) hydrolysates were prepared with a degree of hydrolysis (DH) ranging from 3.5 to 45%. The PC was characterized for proximate composition, amino acid profile, physical and functional properties. The influence of DH on functional and nutritional properties was evaluated. Hygroscopicity increased in all hydrolysates for environmental relative humidities above 40% and solubility increased rapidly for DH above 7%. Water retention, water absorption and oil absorption all decreased as a function of DH. The pH (3 to 9) influenced the water and oil absorption of the hydrolysate with 7% DH. A pH near the isoelectric point tends to decrease water absorption but increase oil absorption capacity. The insoluble fraction (IF) of the hydrolysates presented a better amino acid profile than the soluble fraction (SF). The nutritional indexes determined for the IF did not differ from the total hydrolysate, but they were consistently higher than those for the SF. Copyright © 2003 Society of Chemical Industry  相似文献   

20.
Driven by increased health awareness among consumers, the production of foods and beverages enriched with functional bioactive components is gaining more attention. Malting and lactic acid fermentation are biotechnological processes having potential for producing functional foods and beverages. Due to various biochemical and enzymatic induced changes in raw materials, malting of cereal grains and probiotic lactic acid fermentation of plant‐based media increases the nutritional quality of treated raw materials. The improved nutritional quality is attributed to the accumulation of functional bioactive components along with the degradation of anti‐nutritional components. The selection of raw materials and process parameters are important factors to be considered for increasing the functional bioactive components such as dietary fibres, antioxidants and probiotics. This review article reports the current knowledge on the changes of bioactive components during malting and lactic acid fermentation using probiotic bacterial strains. Process parameters which affect the concentration of bioactive components in raw materials will also be described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号