首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:开发新型食品功能因子载体,有效调控载体在加工、运输和储存过程中功能因子的释放特性。方法:在不同温度(298.2,304.2,310.2 K)下,采用不同摩尔比(1∶0,3∶1,1∶1,1∶3,0∶1)复配的没食子酸(GA)和表没食子儿茶素没食子酸酯(EGCG)与热变性乳清蛋白(HWPI)之间相互作用,利用荧光猝灭法探究其相互作用机制。结果:与GA相比,EGCG与HWPI的亲和性更强,二者共存时,互相抑制彼此与HWPI的结合,结合常数均减小,亲和性降低;EGCG与HWPI的预先结合会促进低浓度、却抑制高浓度GA与HWPI的结合,而GA与HWPI的预先结合会抑制EGCG与HWPI的进一步结合。GA、EGCG与HWPI结合主要驱动力为离子作用力和疏水作用力。与单一多酚体系相比,GA/EGCG(3∶1)与HWPI反应后,体系内离子作用力和疏水作用力增强;GA/EGCG(1∶1)和GA/EGCG(1∶3)与HWPI的体系内主要以疏水相互作用为驱动力。结论:GA和EGCG与HWPI三者之间发生竞争关系;GA/EGCG与HWPI的主要相互作用力与多酚复配比例有关,与二元体系相比,GA/EGCG...  相似文献   

2.
The effects of protein concentration and of blending a phospholipid-rich whey coproduct, Procream (Salibra 700 Procream, Glanbia Nutritionals), with intact or hydrolyzed whey protein concentrate, on fish oil microencapsulation efficiency and oxidative stability were assessed. Trypsin and protease M, from Aspergillus oryzae, were used to produce 2 unique hydrolysates. All microcapsules had excellent encapsulation efficiencies (>92%) and good physical properties, regardless of protein content and Procream inclusion. Intact α-lactalbumin and β-lactoglobulin and their peptides were involved in stabilizing oil droplets. Disulfide interchange resulted in formation of protein aggregates, which were more pronounced in samples containing Procream. Although all microcapsules had relatively good oxidative stability, most had better stability at 2 versus 0.5% protein. Protease M hydrolysate + Procream microcapsules had the highest stability, regardless of protein content. Results demonstrated that Procream, at a reduced protein inclusion level, can partially replace more expensive whey protein ingredients in microencapsulation, when blended with a select hydrolysate.  相似文献   

3.
Enhancement in processing technology has improved the nutritional and functional properties of whey protein concentrates by increasing the content and quality of the protein, leading to their increased use in different food products. The extent of heat treatment affects the quality of the whey protein concentrate, and wide variation in product quality exists due to the various means of manufacture and from the whey product history from farm to factory. The study was carried out with 6 commercial whey protein concentrates with 80% protein (WPC80) to determine variations in physical properties, particle size and density, and functional properties--solubility, gel strength, foam volume, and stability. Significant differences were observed among all the products for every property compared. Particulate size was the most important determinant of functional characteristics. Larger particulate WPC80 had significantly higher fat content and were less soluble with poor foam stability; but narrowing the particle size distribution through sieving, minimized variations. We determined that sieving all products within the particle size distribution range of 100 to 150 microns minimized variation in physical composition, making functionality uniform. WPC80 from different manufacturers can be made to perform uniformly within a narrow functionality range by reducing the particle size distribution through sieving.  相似文献   

4.
乳清蛋白的功能特性及应用   总被引:14,自引:1,他引:14  
介绍了乳清蛋白的组成成分和功能特性;论述了乳清蛋白的生物利用价值及在运动营养、医疗保健和食品加工等方面的广阔应用前景。  相似文献   

5.
采用高压均质法制备乳清蛋白-甘油二酯纳米乳液,以粒径和包埋率为综合指标,在单因素实验的基础上,采用响应面分析法优化纳米乳液的制备条件,并对纳米乳液的表面性质、表征、温度、氧化及贮藏稳定性进行研究。结果表明,乳清蛋白-甘油二酯纳米乳液的最佳工艺条件为:壁材浓度15.83%,壁芯比3.35∶1,乳化剂添加量4.02%,此时,纳米乳液的包埋率最高,为75.5%。纳米乳液带负电,分布均匀,平均粒径在142 nm左右,有明显的壳核结构,包被效果较好。纳米乳液在80℃以下具有较好的稳定性,且能有效延缓甘油二酯的氧化,最佳贮藏温度为4℃。  相似文献   

6.
7.
李红娟 《中国油脂》2021,46(7):34-40
稳定的乳清分离蛋白(WPI)-黄油乳液体系在乳制品加工及乳制品营养传递系统中有良好的应用前景。对不同质量分数(2%、4%、6%、8%)的WPI分别进行不同的热处理(未加热、80 ℃和90 ℃),加入黄油并进行超声波处理,制备成乳液,对乳液体系粒径、絮凝指数(FI)、乳化活性(EA)、乳化稳定性(ES)、物理稳定性、储藏期粒径变化和脂肪上浮情况进行分析。结果表明:随着热处理温度的升高,乳液的平均粒径增大,未加热乳液平均粒径均小于1 μm,经加热处理后,不同蛋白质量分数乳液的粒径均有不同程度的增大;经过热处理,乳液的EA和ES均有所改善;随着蛋白质量分数的增大,乳液的物理稳定性提高,其中WPI质量分数为6%和8%时,90 ℃热处理样品的稳定性指数(TSI)均小于0.6,稳定性最好,同一蛋白质量分数下,热处理温度越高,蛋白对乳液的稳定作用越强;乳液储藏期脂肪上浮情况与热处理温度和蛋白质量分数显著相关,较高的蛋白质量分数及热处理温度能够改善乳液体系中脂肪上浮情况。研究表明,通过控制蛋白质量分数和WPI热处理温度可以有效提高WPI-黄油乳液体系的乳化特性及稳定性。  相似文献   

8.
Soybean lecithin is often used as a surfactant in food formulation. The aim of this study was to investigate the interactions between soybean lecithin (SL, 0–3%, wt/vol) and whey protein (WP, 10%, wt/vol) or polymerized whey protein (PWP, 10%, wt/vol) induced by heating WP solutions at 85°C for 0 to 20 min at pH 7.0. The samples were evaluated for zeta potential, particle size, morphology, rheological properties, thermal properties, secondary structure, and surface hydrophobicity. Zeta potential of WP increased linearly as SL level increased from 0 to 3%, whereas that of PWP changed with plateau at SL level of 1%, which may be due to the aggregation of SL. The addition of SL increased the particle size and apparent viscosity of both WP and PWP. All the samples exhibited different morphology depending on SL level and heating time according to transmission electron microscopy images. Whey protein showed obviously decreased gelation time and increased storage modulus in the presence of SL. Differential scanning calorimetry curves confirmed the effects of SL on the thermal properties of both WP and PWP. Circular dichroism spectra indicated that SL had effects on the secondary structure of both WP and PWP. The changes in surface hydrophobicity indicated the hydrophobic interactions between WP/PWP and SL. Data indicate that the physicochemical and functional properties of WP and PWP can be altered by adding soybean lecithin.  相似文献   

9.
对一种富含乳清蛋白的高蛋白活性乳酸菌饮料的稳定性进行了研究,结果发现:牛乳蛋白:与乳清蛋白比例为2:1,且乳清蛋白参与发酵时,当CMCFH9用量为0.4%、黄原胶用量为0.03%、瓜尔豆胶用量为0.02%、柠檬酸钠用量为0.05%时,产品口感较佳、稳定性最好。  相似文献   

10.
乳清蛋白对脱脂发酵乳的流变特性及贮存稳定性的影响   总被引:4,自引:0,他引:4  
研究了乳清蛋白对脱脂发酵乳流变学特性及贮存稳定性的影响,在VAYC-370为发酵剂的情况下,分别以质量分数为10%,20%,30%和40%的乳清蛋白替代脱脂奶粉进行发酵,结果表明,乳清蛋白会降低发酵乳凝胶的硬度、提高发酵乳的内聚性,同时发现乳清蛋白可提高搅拌型发酵乳的贮存稳定性.表明发酵乳凝胶的内聚性与贮存稳定性呈正相关关系。  相似文献   

11.
以乳清蛋白与玉米油为原料,采用高压均质技术制备水包油型(O/W)乳液。探究乳清蛋白浓度(0.45%~3.60%)、离子强度(250 mmol/L Na Cl)对乳清蛋白乳液界面特性及其物理稳定性和氧化稳定性的影响。结果表明:随着乳清蛋白浓度的增加,乳液的粒径、乳析指数、过氧化值(POV)和丙二醛生成物(TBARS)都呈现降低的趋势,而乳液的界面蛋白浓度、电位随着蛋白浓度的增加而增加。乳液中加入250 mmol/L Na Cl能够增加乳液的粒径、乳析指数、界面蛋白含量、电位值、POV和TBARS值。上述结果表明乳液界面蛋白浓度增多,乳液的物理稳定性和氧化稳定性得到增强,而乳液中加入Na Cl后能够减弱乳液的物理稳定性和氧化稳定性。   相似文献   

12.
13.
乳清蛋白的功能成分及其主要应用   总被引:1,自引:0,他引:1  
乳清蛋白是干酪生产的副产品,它具有神奇的功能成分,广泛应用于食品行业、医药、饲料、化妆品及其它行业。乳清蛋白的人气正在上升,它已经成为风靡全球的“健康代表”。  相似文献   

14.
微生物谷氨酰胺转胺酶对乳清蛋白的改性   总被引:1,自引:0,他引:1  
介绍了该酶的来源、性质及催化反应机理。由于乳清蛋白应用于食品加工中时,其理化功能尚不突出,所以通过谷氨酰胺转胺酶对乳清蛋白的改性,可以加强乳清蛋白的功能性质,从而合理利用资源,开发新产品,扩大其在食品中的应用。  相似文献   

15.
Milk, a rich source of nutrients, can be fractionated into a wide range of components for use in foods and beverages. With advancements in filtration technologies, micellar caseins and milk-derived whey proteins are now produced from skim milk using microfiltration. Microfiltered ingredients offer unique functional and nutritional benefits that can be exploited in new product development. Microfiltration offers promise in cheesemaking, where microfiltered milk can be used for protein standardization to improve the yield and consistency of cheese and help with operation throughputs. Micellar casein concentrates and milk whey proteins could offer unique functional and flavor properties in various food applications. Consumer desires for safe, nutritious, and clean-label foods could be potential growth opportunities for these new ingredients. The application of micellar casein concentrates in protein standardization could offer a window of opportunity to US cheese makers by improving yields and throughputs in manufacturing plants.  相似文献   

16.
超滤膜分离技术回收乳清蛋白工艺研究   总被引:2,自引:1,他引:2  
研究利用超滤膜分离技术,从干酪素乳清废弃液中回收乳清蛋白,通过对不同超滤膜性能的比较,选择最佳的超滤膜材料、工艺流程以及运行参数,并测得分离效果。结果表明:采用PW2540型聚醚砜卷式超滤膜较好,其最佳工艺参数为操作温度35℃,操作压力0.5MPa,且超滤膜透液通量较高,运行稳定。乳清蛋白粉中蛋白质含量72.40%,灰分3.85%。经红外光谱检测证明乳清蛋白粉品质得到较大程度的提高。每吨乳清废弃液中可回收乳清蛋白粉5.13kg,具有较好的经济效益及减排环保效益。  相似文献   

17.
To explore the complex relationship between processing conditions and functional and nutritional properties of food products containing whey protein isolate (WPI), we investigated the effect of extrusion texturization at various temperatures (50, 75, and 100°C) and varying moisture levels of the feed (20, 30, 40, and 50%) on changes in the composition, molecular structure, and protein quality of the extrudates. Bradford assay methods were used to determine protein solubility of the extruded WPI as a function of changing level of moisture. Protein compositional changes as a function of extrusion conditions were quantitatively characterized and analyzed by sodium dodecyl sulfate-PAGE and reversed-phase-HPLC techniques. We showed that at a given temperature, increasing the extrusion moisture content resulted in a slight increase in the overall protein water solubility (at 50 and 75°C), averaging approximately 5% per 10% increase in moisture content. A reduction in β-lactoglobulin content was observed at 50°C with increasing moisture content, indicative of the sensitive nature of β-lactoglobulin to extrusion treatment, whereas the amount of α-lactalbumin remained unchanged at all moisture contents used at a set temperature. The protein quality of the extruded WPI, determined chemically by available sulfhydryl and primary and secondary amines, remained relatively unchanged as a function of moisture level. Circular dichroism and intrinsic tryptophan fluorescence spectroscopic studies revealed considerable structural changes, both at the secondary structural level and the tertiary contacts as a function of increasing temperature, and higher moisture levels can slightly preserve secondary structures but not the tertiary contacts of the protein molecules. Atomic force microscopy provided direct visualization of the fine difference of the protein particles caused by changing extrusion moisture contents, which is in close agreement with the results obtained using other techniques in this work.  相似文献   

18.
时玉强 《中国油脂》2020,45(9):50-53
以大豆异黄酮和酪蛋白酸钠为参照,采用Lab模型考察不同pH及时间下大豆乳清蛋白溶液色值的变化,分析影响大豆乳清蛋白溶液颜色的因素。结果发现:随p H的升高,大豆乳清蛋白溶液的亮度下降,红色和黄色值增加;中性和碱性条件下,随着时间的延长,大豆乳清蛋白溶液的亮度下降,红色值增加,而黄色值在中性条件下不变,在碱性条件下增加。通过对大豆异黄酮溶液和酪蛋白酸钠溶液的色值比较发现,大豆异黄酮及其在碱性环境下的显色反应是造成大豆乳清蛋白溶液呈现黄色的关键因素,而羰氨反应是大豆乳清蛋白溶液变红的重要影响因素。因此,在生产过程中pH控制在7.5以内,生产周期尽量缩短,有利于大豆乳清蛋白溶液黄色和红色的控制。  相似文献   

19.
Whey protein concentrate (WPC) has many applications in the food industry. Previous research demonstrated that treatment of whey proteins with high hydrostatic pressure (HHP) can enhance solubility and foaming properties of whey proteins. The objective of this study was to use HHP to improve functional properties of fresh WPC, compared with functional properties of reconstituted commercial whey protein concentrate 35 (WPC 35) powder. Fluid whey was ultrafiltered to concentrate proteins and reconstituted to equivalent total solids (8.23%) as reconstituted commercial WPC 35 powder. Solutions of WPC were treated with 300 and 400 MPa (0- and 15-min holding time) and 600 MPa (0-min holding time) pressure. After HHP, the solubility of the WPC was determined at both pH 4.6 and 7.0 using UDY and BioRad protein assay methods. Overrun and foam stability were determined after protein dispersions were whipped for 15 min. The protein solubility was greater at pH 7.0 than at pH 4.6, but there were no significant differences at different HHP treatment conditions. The maintenance of protein solubility after HHP indicates that HHP-treated WPC might be appropriate for applications to food systems. Untreated WPC exhibited the smallest overrun percentage, whereas the largest percentage for overrun and foam stability was obtained for WPC treated at 300 MPa for 15 min. Additionally, HHP-WPC treated at 300 MPa for 15 min acquired larger overrun than commercial WPC 35. The HHP treatment of 300 MPa for 0 min did not improve foam stability of WPC. However, WPC treated at 300 or 400 MPa for 15 min and 600 MPa for 0 min exhibited significantly greater foam stability than commercial WPC 35. The HHP treatment was beneficial to enhance overrun and foam stability of WPC, showing promise for ice cream and whipping cream applications.  相似文献   

20.
The increasing use and demand for whey protein as an ingredient requires a bland-tasting, neutral-colored final product. The bleaching of colored Cheddar whey is necessary to achieve this goal. Currently, hydrogen peroxide (HP) and benzoyl peroxide (BPO) are utilized for bleaching liquid whey before spray drying. There is no current information on the effect of the bleaching process on the flavor of spray-dried whey protein concentrate (WPC). The objective of this study was to characterize the effect of bleaching on the flavor of liquid and spray-dried Cheddar whey. Cheddar cheeses colored with water-soluble annatto were manufactured in duplicate. Four bleaching treatments (HP, 250 and 500 mg/kg and BPO, 10 and 20 mg/kg) were applied to liquid whey for 1.5 h at 60°C followed by cooling to 5°C. A control whey with no bleach was also evaluated. Flavor of the liquid wheys was evaluated by sensory and instrumental volatile analysis. One HP treatment and one BPO treatment were subsequently selected and incorporated into liquid whey along with an unbleached control that was processed into spray-dried WPC. These trials were conducted in triplicate. The WPC were evaluated by sensory and instrumental analyses as well as color and proximate analyses. The HP-bleached liquid whey and WPC contained higher concentrations of oxidation reaction products, including the compounds heptanal, hexanal, octanal, and nonanal, compared with unbleached or BPO-bleached liquid whey or WPC. The HP products were higher in overall oxidation products compared with BPO samples. The HP liquid whey and WPC were higher in fatty and cardboard flavors compared with the control or BPO samples. Hunter CIE Lab color values (L*, a*, b*) of WPC powders were distinct on all 3 color scale parameters, with HP-bleached WPC having the highest L* values. Hydrogen peroxide resulted in a whiter WPC and higher off-flavor intensities; however, there was no difference in norbixin recovery between HP and BPO. These results indicate that the bleaching of liquid whey may affect the flavor of WPC and that the type of bleaching agent used may affect WPC flavor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号