首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
ABSTRACT

Fatty acid esters of 3-monochloropropane-1,2-diol (3-MCPD) and glycidol are potentially carcinogenic and/or genotoxic processing contaminants that are formed during the process of edible oil refining. Because of their toxicological properties, the presence of these compounds in refined oils and foods containing these oils, particularly infant formula, poses a potential food safety concern. For this reason, recent research efforts have focussed on the development of methods for the analysis of MCPD and glycidyl esters in infant formula in order to estimate levels of exposure. This work presents occurrence data for 3-MCPD and glycidyl esters in 222 infant formulas purchased in the United States between December 2017 and January 2019. The results of this study show a wide range of contaminant concentrations across four different manufacturers, with average bound 3-MCPD concentrations ranging from 0.035 µg g?1 to 0.63 µg g?1 and average bound glycidol concentrations ranging from 0.019 µg g?1 to 0.22 µg g?1. The data suggest that manufacturers B and C source palm oil produced with mitigation measures, leading to reduced amounts of 3-MCPD and glycidyl esters in their infant formulas. Additionally, comparison with a previously published study in our laboratory of the occurrence of 3-MCPD and glycidyl esters in infant formula purchased in the U.S. between 2013 and 2016 revealed that, since 2016, contaminant concentrations have decreased in products produced by manufacturers A, B, and C, while contaminant amounts in formulas from manufacturer D have slightly increased.  相似文献   

2.
研究了12种共计74批次市售食用油中3-氯丙醇酯(3-MCPDE)和缩水甘油酯(GE)污染情况,及脱臭条件对二者生成的影响,以及吸附剂和分子蒸馏对二者脱除的影响。结果发现,12种食用油中3-MCPDE和GE的检出率为100%,其中3-MCPDE含量范围为0. 234~12. 212mg/kg,GE含量范围为0. 196~10. 891 mg/kg,米糠油中3-MCPDE和GE含量最高,其次为棕榈液油。脱臭温度对3-MCPDE和GE的影响显著,3-MCPDE和GE大量生成的脱臭温度分别为大于220℃和大于200℃,并且随着脱臭时间的延长3-MCPDE和GE含量增加。GE可以通过活性炭、活性白土、硅胶和凹凸棒土等吸附剂吸附脱除,脱除率可达96%以上。3-MCPDE难以通过吸附剂吸附的方式脱除。分子蒸馏可同时脱除3-MCPDE和GE,蒸馏温度230℃时3-MCPDE和GE脱除率分别达到88%和94%。  相似文献   

3.
Dietary advanced glycation end products (dAGEs) are complex and heterogeneous compounds derived from nonenzymatic glycation reactions during industrial processing and home cooking. There is mounting evidence showing that dAGEs are closely associated with various chronic diseases, where the absorbed dAGEs fuel the biological AGEs pool to exhibit noxious effects on human health. Currently, due to the uncertain bioavailability and rapid renal clearance of dAGEs, the relationship between dAGEs and biological AGEs remains debatable. In this review, we provide the most updated information on dAGEs including their generation in processed foods, analytical and characterization techniques, metabolic fates, interaction with AGE receptors, implications on human health and reducing strategies. Available evidence demonstrating a relevance between dAGEs and food allergy is also included. AGEs are ubiquitous in foods and their contents largely depend on the reactivity of carbonyl and amino groups, along with surrounding condition mainly pH and heating procedures. Once being digested and absorbed into the circulation, two separate pathways can be involved in the deleterious effects of dAGEs: an AGE receptor‐dependent way to stimulate cell signals, and an AGE receptor‐independent way to dysregulate proteins via forming complexes. Inhibition of AGEs formation during food processing and reduction in the diet are two potent approaches to restrict health‐hazardous dAGEs. To elucidate the biological role of dAGEs toward human health, the following significant perspectives are raised: molecular size and complexity of dAGEs; interactions between unabsorbed dAGEs and gut microbiota; and roles played by concomitant compounds in the heat‐processed foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号