首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crystallinity is a controlling parameter in the development of microcellular foam final structure. In this research, using a well-controlled continuous microcellular foamed sheet production system, the effect of crystallinity on the final structure of the microcellular foam is studied. To produce microcellular foamed sheets, different levels of the supercritical carbon dioxide (ScCO2) is dissolved in the polymer at high pressure and the foamed material is stabilized using a four roll apparatus at different roll temperatures. Crystallization occur by delay, however this lag time can be controlled by controlling temperature gradient. The higher decrease in the roll temperature results in higher temperature gradient which increases the crystallization rate during the cell growth, causing bimodal cell structures which indicates secondary nucleation. Moreover, as the amount of gas increases, the cell formation time increases, hence, at even higher temperatures we observed the effect of secondary nucleation, resulting in the occurrence of bimodal cell structures.  相似文献   

2.
Microcellular polymeric foam structures have been generated using a pressure‐induced phase separation in concentrated mixtures of supercritical CO2 and styrene‐co‐acrylonitrile (SAN). The process typically generates a microcellular core structure encased by a non‐porous skin. Pore growth occurs through two mechanisms: diffusion of CO2 from polymer‐rich regions into the pores and also through CO2 gas expansion. The effects of saturation pressure, temperature and swelling time on the cell size, cell density and bulk density of the porous materials have been studied. Higher CO2 pressures (hence, higher fluid density) provided more CO2 molecules for foaming, generated lower interfacial tension and viscosity in the polymer matrix, and thus produced lower cell size but higher cell densities. This trend was similar to what was observed in swelling time series. While the average cell size increased with increasing temperature, the cell density decreased. The trend of bulk density was similar to that of cell size. © 2000 Society of Chemical Industry  相似文献   

3.
A new process was used to prepare microcellular foams with supercritical carbon dioxide as the physical foaming agent in a batch. The foaming temperature range of the new process was about five times broader than that of the conventional one. Characterization of the cellular structure of the original polypropylene (PP) and PP/nano‐CaCO3 (nanocomposites) foams was conducted to reveal the effects of the blend composition and processing conditions. The results show that the cellular structure of the PP foams was more sensitive to the foaming temperature and saturation pressure variations than that of the nanocomposite foams. Uniform cells of PP foams are achieved only at a temperature of 154°C. Also, the low pressure of 20 MPa led to very small cells and a low cell density. The competition between the cell growth and cell nucleation played important role in the foam density and was directly related to the foaming temperature. Decreasing the infiltration temperature depressed the initial foaming temperature, and this resulted in significantly larger cells and a lower cell density. A short foaming time led to a skin–core structure; this indicated that a decrease in the cell size was found from skin to core, but the skin–core structure gradually disappeared with increasing foaming time. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
采用空心玻璃微珠(HGB)填充热塑性聚氨酯(TPU),制备了HGB/TPU复合泡沫材料。研究了硅烷偶联剂KH550对HGB的表面处理,并借助SEM探讨了不同发泡方式、发泡剂含量、HGB含量对复合泡沫材料微观形态结构的影响。结果表明:经KH550处理的HGB与TPU基体界面结合良好;通过注塑发泡得到的泡沫材料发泡效果较好;当发泡剂含量为1%、HGB含量为2%时复合泡沫材料的泡孔分布均匀,尺寸较为均一。  相似文献   

5.
ABSTRACT

The aim of this study was the comparison of beads foaming process and synergistic effect of foaming process parameters on melting crystalline characteristics between thermoplastic polyester and polyether polyurethane(TPU) via batch process using supercritical CO2(scCO2) as blowing agent. Method was based on the generation of expandable TPU foam beads (ETPU) prepared by self-designed autoclave foaming apparatus. The surface morphology, cell structure, and crystalline melting characteristics of the ETPU depending on the processing parameters, such as saturation pressure (Pf), saturation temperature (Tf), and saturation time (tf), were investigated. Results demonstrated both ETPU exhibited fine closed cell morphology with polygons structure and would induce the disappearance of multiple endothermic peaks during the foam process. As any of those three process parameters increased, the HS content, high crystalline melting and Er were improved, while with regard to cell structure, Pf demonstrated the opposite effect compared with Tf and tf. Comparing with polyether TPU, polyester TPU possess a larger cell density and a clear bimodal cell structure could be found under certain condition, while beads foaming process had a greater impact on polyether TPU, which had a low density and the appropriate tf is 2h.  相似文献   

6.
Polyethylene‐octene elastomer (POE)/organoclay nanocomposite was prepared by melt mixing of the POE with an organoclay (Cloisite 20A) in an internal mixer, using poly[ethylene‐co‐(methyl acrylate)‐co‐(glycidyl methacrylate)] copolymer (E‐MG‐GMA) as a compatibilizer. X‐ray diffraction and transmission electron microscopy analysis revealed that an intercalated nanocomposite was formed and the silicate layers of the clay were uniformly dispersed at a nanometre scale in the POE matrix. The nanocomposite exhibited greatly enhanced tensile and dynamic mechanical properties compared with the POE/clay composite without the compatibilizer. The POE/E‐MA‐GMA/clay nanocomposite was used to produce foams by a batch process in an autoclave, with supercritical carbon dioxide as a foaming agent. The nanocomposite produced a microcellular foam with average cell size as small as 3.4 µm and cell density as high as 2 × 1011 cells cm?3. Copyright © 2005 Society of Chemical Industry  相似文献   

7.
以聚丙烯(PP)为原料,超临界氮气(N2)为发泡剂,通过自行设计的一种扁平螺旋线形流道模具探究了注塑制品充模长度与减重比、泡孔结构之间的关系,并设计正交试验研究了注气压差、注气时间、注射压力和注射速率对制品充模长度的影响.结果表明,在一定范围内,熔体背压越高,制品充模长度越长,且随着充模长度增加,制品的减重比呈先缓慢增...  相似文献   

8.
Microcellular foaming of low‐Tg biodegradable and biocompatible polycaprolactone (PCL) in supercritical CO2 has been studied. The purpose is to apply microcellular materials to drug containers and medical materials for artificial skin or bone. Effects of a series of variable factors on the foam structures, such as saturation temperature, saturation pressure, saturation time, and depressurization time were studied. The experimental results indicate that, while keeping other variables unchanged, higher saturation temperature leads to reduced bulk densities and different saturation pressures result in different nucleation processes. In addition, saturation time has a profound effect on the structure of the product. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 593–597, 2004  相似文献   

9.
The cell nucleation and real‐time cell growth with increasing cell growth time in microcellular foaming were investigated by means of temperature quenching in a supercritical CO2 pressure‐quench process. Samples of uniform size and shape were saturated in a vessel under conditions of 100–180°C and 30 MPa, and then depressurized to the atmosphere in 10 s. After depressurization, these samples were removed from the vessel at prescribed intervals, and immediately immersed in an ice‐water slurry to obtain foamed samples with various cell growth times. It was found that the nucleation density is closely correlated to the gas absorption capacity of the polymer matrix, so that the final cell density should not be adopted as the nucleation density, as done commonly. The change of cell structure and mass density with increasing cell growth time was dominated by gas diffusion behavior, which was strongly influenced by the temperature. The final cell structure was mainly determined by the cell growth step, where gas diffusion played a key role. The final cell density was in direct proportion to the gas remaining in the substrate, which ranged from 6.0 × 109 to 4.7 × 106 cells/cm3. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 163–171, 2004  相似文献   

10.
介绍了微孔塑料连续挤出成型的原理和设备以及在微孔聚合物制备中应用超临界CO2的优点。阐述了连续挤出设备中采用的2种成核装置(快速释压喷嘴和齿轮泵)的优缺点。综述了国内外超临界CO2辅助微孔塑料连续挤出加工技术的发展状况,提出了今后的研究方向。  相似文献   

11.
In the past 3 decades, there has been great advancement in the preparation of microcellular thermoplastic polymer foams. However, little attention has been paid to thermoplastic elastomers. In this study, microcellular poly(ethylene‐co‐octene) (PEOc) rubber foams with a cell density of 2.9 × 1010 cells/cm3 and a cell size of 1.9 μm were successfully prepared with carbon dioxide as the physical blowing agent with a batch foaming process. The microcellular PEOc foams exhibited a well‐defined, closed‐cell structure, a uniform cell size distribution, and the formation of unfoamed skin at low foaming temperatures. Their difference from thermoplastic foam was from obvious volume recovery in the atmosphere because of the elasticity of the polymer matrix. We investigated the effect of the molecular weight on the cell growth process by changing the foaming conditions, and two important effect factors on the cell growth, that is, the polymer matrix modulus/melt viscoelastic properties and gas diffusion coefficient, were assessed. With increasing molecular weight, the matrix modulus and melt viscosity tended to increase, whereas the gas solubility and diffusion coefficient decreased. The increase in the matrix modulus and melt viscosity tended to decrease the cell size and stabilize the cell structure at high foaming temperatures, whereas the increase in the gas diffusion coefficient facilitated cell growth at the beginning and limited cell growth because most of the gas diffused out of the polymer matrix during the long foaming times or at high foaming temperatures. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
A facile and effective approach for manufacturing poly(butylene adipate-co-terephthalate) (PBAT) foams with obvious bimodal cellular structure (BCS) was proposed utilizing chain extension and batch supercritical CO2 foaming technology. Ethylene-glycidyl methacrylate copolymer (EGMA) as crystalline chain extender was selected to modify PBAT. The results of torque tests, differential scanning calorimetry, and rheological performances demonstrated that the melt strength, viscoelasticity, and crystallization properties of PBAT were improved after introducing EGMA. The influences of EGMA content and foaming temperature on the cellular structure of PBAT foams were investigated systematically. By decreasing the foaming temperature, the size of both large and small cells in the bimodal chain extended PBAT-3 (CPBAT-3) foams decreased, as well as their BCS became distinct gradually. The BCS in diverse CPBAT foams was successfully controlled via varying EGMA content and foaming temperature. Finally, the formation mechanism of BCS in diverse PBAT foams was presented.  相似文献   

13.
Controlling sandwich‐structure of poly(ethylene terephthalate) (PET) microcellular foams using coupling of CO2 diffusion and CO2‐induced crystallization is presented in this article. The intrinsic kinetics of CO2‐induced crystallization of amorphous PET at 25°C and different CO2 pressures were detected using in situ high‐pressure Fourier transform infrared spectroscopy and correlated by Avrami equation. Sorption of CO2 in PET was measured using magnetic suspension balance and the diffusivity determined by Fick's second law. A model coupling CO2 diffusion in and CO2‐induced crystallization of PET was proposed to calculate the CO2 concentration as well as crystallinity distributions in PET sheet at different saturation times. It was revealed that a sandwich crystallization structure could be built in PET sheet, based on which a solid‐state foaming process was used to manipulate the sandwich‐structure of PET microcellular foams with two microcellular or even ultra‐microcellular foamed crystalline layers outside and a microcellular foamed amorphous layer inside. © 2011 American Institute of Chemical Engineers AIChE J, 58: 2512–2523, 2012  相似文献   

14.
In spite of great concern on the wide application of silicone rubber foams, few works have been reported about easy‐operating foaming method. In this study, the effects of silica content and foaming process on the porous structure of high‐temperature‐vulcanized silicon rubber foams are evaluated, which are prepared by supercritical CO2 at different conditions, with fumed silica used for reinforcement. Silicone rubber foams with cell size in 8–120 μm, cell density in 105–108 cm−3, and density between 0.45 and 0.9 g cm−3 are prepared under different saturation conditions. The results show that increasing silica content can decrease cell size. It is also found that cell density improves exponentially with increasing saturation pressure and decreasing saturation temperature. Besides, it demands less than 1 h for specimens to reach equilibrium on thickness around 3 mm. All the results indicate that the porous structures of silicone foams can be tailored by foaming process parameters facilely and are predictable with fitted equation.

  相似文献   


15.
刘占斌  何雅玲  王坤  马朝  姜涛 《化工学报》2019,70(9):3329-3336
超临界CO2工质在太阳能热发电系统中的应用能够有效提升整个系统的效率、紧凑性和环境友好性,因此有必要优化超临界CO2用太阳能集热器的综合性能。提出了泡沫材料有效热导率新的预测模型,并研究了不同泡沫材料填充方式对集热管内超临界CO2流动与换热性能、管壁温度分布的影响规律。结果表明,环形填充方式(沿管内壁填充)的流动换热综合性能指标(j/j c)/(f/f c)1/3最优,净吸热量最大,管壁最高温度最低且温度分布最均匀。  相似文献   

16.
In this article, PA6/poly(tetrafluoroethylene) (PTFE) composites were prepared by internal mixer with high rotor speed. The existence of PTFE nano-fibrillation network structure was observed by scanning electron microscopy (SEM) analysis. The effect of PTFE on crystallization and rheological behavior of PA6 was evaluated. The result showed that the PTFE fibrils improved the crystallization properties of PA6 and do not change the crystal structure. The PTFE effectively enhanced the melt strength of PA6 by fibrillation. The PA6/PTFE composites were then foamed assisted by supercritical CO2. The PTFE was used as cell nucleating agent, crystal nucleating agent and melt strength enhancement agent in the foaming process. Finally, the microcellular PA6 foams were successfully obtained with the cell density higher than 109 cells/cm3, the cell size of ca. 14 μm and the volume expansion ratio of 16.  相似文献   

17.
This article reports the effect of cell structure on oil absorption of highly oil-absorptive polyurethane foam (ON-PUR), which is suitable for on-site foaming. We have developed ON-PUR as an oil absorbing polyurethane foam using a very reactive recipe. ON-PUR was synthesized by mixing polyol, water, additives, and polymeric diphenylmethane diisocyanate (P-MDI) using a high-pressure foaming machine. Density, airflow, oil absorption of this foam, and cell structure by microscopy were measured. From these results, it was found that the airflow of this foam increased by crushing, and the oil absorption of this foam increased sharply in a narrow airflow range (from 0.1 to 0.8 scfm). This increase is estimated to be due to the decrease of closed cell structures by crushing treatment. Furthermore, we constituted on-site foaming system in bench scale, which was expected to be applicable to on-site preparation of ON-PUR. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 179–186, 1997  相似文献   

18.
Highly CO2-philic nanoparticles, octatrimethylsiloxy polyhedral oligomeric silsesquioxanes (POSS) are used to increase the affinity of poly(methyl methacrylate) (PMMA) to CO2 in supercritical carbon dioxide (scCO2) foaming, thus to improve its foaming performance and the foam morphology. PMMA and PMMA-POSS composite foams were produced based on the two-factorial design, at the upper and lower experimental conditions of pressure, temperature, processing time, and venting rate. The foams of PMMA-5% POSS composites exhibited smaller average pore sizes and higher pore densities than neat PMMA and PMMA-0.5% POSS composites. The smallest average pore diameter (0.3 μm) and the highest pore density (6.33 × 1012 cm−3) were obtained with this composite processed at 35°C, 32 MPa, for 24 h and depressurized with fast-venting rate (0.4 MPa/s). ScCO2 processing decreased the density of the polymer by more than 50%.  相似文献   

19.
A blend of polystyrene and thermal polyurethane (PS/TPU) was prepared using supercritical (SC) CO2 as a substrate‐swelling agent and monomer/initiator carrier. The SC CO2/styrene/TPU ternary system was studied. Virgin TPU and synthesized blends were characterized through differential scanning calorimetry, infrared spectroscopy, rheometric measurements, and SEM. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2016–2020, 2005  相似文献   

20.
利用Fluent软件模拟不同工艺条件下反应釜内锥形混合元件所受的扭矩,依据锥板流变仪原理获得反应釜内PS/CO_2均相体的黏度,并分析熔体温度、CO_2质量浓度对均相体流变性能的影响。结果表明,当剪切速率一定时,升高熔体温度或CO_2质量浓度有助于降低均相体黏度;当熔体温度和CO_2质量浓度一定时,剪切速率越高,均相体黏度越低;且温度较低时,黏度随着CO_2浓度升高而下降的更剧烈。而均相体的黏度对于快速降压口模的压力降率有直接影响,对于如何获得更大的压力降率有指导作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号