首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 341 毫秒
1.
1. IntroductionIn last decade, two types of NdFeB nanocomposite powders, namely, or-Fe/Nd,Fe,.B['] andFe,B/Nd,Fe,.B['] t have drawn much attention of theresearcher for the bonded magnet application, because of their high remanence (B.) and high maximum energy product ((BH)...). The deficiency ofthese types of nanocomposites is their lower coercivity (tHe <8 hoe) arisen from the existence of certain amount of magnetically soft or-Fe or Fe3B phases,which might limit their application in h…  相似文献   

2.
1. IntroductionImprovement of hard magnetic properties, simplification of processing, and reduction of cost havebeen the principal motivating factors for much ofthe research on Nd-Fe-B permanent magnet materials since they were discovered. According to traditional Stoner-Wohlfarth model, the biggest Jr/Jsof hard magnetic materials with coarser microstructures is 0.sit]. When the grain size of Nd-Fe--B magnets is small enough, exchange coupled interactionwould be produced between soft and h…  相似文献   

3.
Magnetic properties and phase evolution of melt spun R9.5Fe(bal.)Ti2B10 (R = MM(A), MM(B), MM(C), Pr, Nd, Ce, and La) nanocomposites have been investigated. Based on the results for the X-ray diffraction and thermal magnetic analysis, only 2:14:1 and alpha-Fe phases appear for R = MM(A) and Pr, and an additional Fe3B phase is present for R = MM(B), MM(C), Nd, and Ce. Besides, the uniform fine grain size of 20-40 nm is almost unchanged for the ribbons with various rare earth elements. Accordingly, magnetic properties of MM9.5Fe(bal.)Ti2B10 nanocomposites are mainly dominated by the composition of Mischmetals or the rare earth elements adopted, and are consistent with the outcome for the combinations of magnetic properties of their corresponding R9.5Fe(bal.)Ti2B10 nanocomposites. In this study, the optimum magnetic properties of B(r) = 9.3 kG, (i)H(c) = 12.1 kOe and (BH)(max) = 18.0 MGOe can be achieved for MM(B)9.5Fe(bal.)Ti2B10 nanocomposites. They not only exhibit comparable magnetic properties to the commercial available powders but also reduce the original material cost effectively.  相似文献   

4.
In this paper, the technology, structures and magnetic properties of Nd4.5Fe76Co1B18.5 nanocomposite magnets were investigated. The effect of crystallizing treatment temperature and time on structures and magnetic properties of Nd4.5Fe76Co1B18.5 amorphous ribbons was studied. The results show that Nd4.5Fe76Co1B18.5 containing more analogue metals is easy to form a morphous. The magnetic properties of 16 m/s quenched ribbon for 710 degrees Cx900 s crystallizing treatment reach H-i(c)=242.1 kA/m, B-r=0.9410 T and (BH)(max)=59.64 kJ/m(3). The even grain size is about D-Fe3B=34 nm and D-Nd2Fe14B=23 nm.  相似文献   

5.
1. IntroductionThe remanence enhancement in isotropic meltspun Nd-Fe-B flakes was obtained[1]. The flakes consist of soft magnetic grains distributed on a nanometerscale within a skeleton of a nanocrystalline hard magnetic matrix. The exchange coupling nanostructureslead to a remanence higher than that of comparable alloysl2-71. The effect wajs observed by Coehoornet al.18] for the multiphase alloys in rapidly quenchedNd-Fe-B alloys. This flakes had NdZFe14B, Fe3B anda-Fe as hard and sof…  相似文献   

6.
研究Ti和C添加对Nd9.4Fe79.6B11合金磁性能的影响规律。结果表明:Ti和C联合添加能够在不降低合金剩磁的情况下显著提高合金的矫顽力,最佳工艺条件下制备出的Nd9.4Fe75.6Ti4B10.5C0.5合金薄带的剩磁Br=0.91T,矫顽力Hcj=975.6kA/m,磁能积(BH)max=135.4kJ/m3。在磁体密度为6.1g/cm3时,黏结Nd9.4Fe75.6Ti4B10.5C0.5磁体剩磁Br=0.68T,内禀矫顽力Hcj=975kA/m,最大磁能积(BH)max=76 kJ/m3,性能和MQ-D磁粉制备的黏结磁体性能相当,具有低价位高性能的特点。  相似文献   

7.
1. IntroductionRecelltly new intermetallic compounds NdZ(Fe,Ti)lo and RZ(Feo.91Vo.og)19 (R=Y, Nd, Sin, Gd) werediscovered by Collocott et al.II] and Shcherbakovaat al.IZ], respectively. The crystal structure of thesenew phases has been identified to be Nd3(Fe, Ti)29type structure using X-ray diffraction by Li et al.I3].Among them, the Sin3(Fe,Ti)29N. compound exhibitsstrong uniaxial anisotropy' and its saturation magnetization is very close to that of S.,Fe,,N;'] compound.The hydr…  相似文献   

8.
A novel equimolar high-entropy(HE)transition metal monoboride,(Cr0.2Mn0.2Fe0.2Co0.2Mo0.2)B,was designed and prepared in powder and bulk form by high temperature elemental reac-tion method and spark plasma sintering(SPS)method,respectively.XRD analysis shows that HE(Cr0.2Mn0.2Fe0.2Co0.2Mo0.2)B possesses orthorhombic structure with Pnma space group.Through Rietveld refinement,the lattice parameters of HE(Cr0.2Mn0.2Fe0.2Co0.2Mo0.2)B are a=5.6675,b=2.9714,c=4.2209 and the theoretical density is 6.95 g/cm3.The Vickers hardness and electrical conductivity of HE(Cr0.2Mn0.2Fe0.2Co0.2Mo0.2)B bulk with relative density of 90%is 12.3±0.5 GPa and 0.49±0.04×106 S/m,respectively.Due to high electrical conductivity,HE(Cr0.2Mn0.2Fe0.2Co0.2Mo0.2)B bulk with 3.0 mm thickness displays superior EMI shielding performance in 18.0-26.5 GHz(K-band),and the average values of SET,SER,and SEA are 23.3 dB,13.9 dB,and 9.4 dB,respectively.The EMI shielding mechanism of HE(Cr0.2Mn0.2Fe0.2Co0.2Mo0.2)B mainly results from reflection.  相似文献   

9.
Magnetic properties of SmFe10(Ti,M)2 melt-spun ribbons were studied, where M is V, Cr, Mn, and Mo. The ribbons (M=V/Cr/Mo) quenched at 20 m/s exhibit the high coercivities of 4.2-5.5 kOe. Annealing the ribbons quenched at 40 m/s enhances their coercivities in the range of 5.9-10.0 kOe. In particular, SmFe10 (TiV) and SmFe10(TiCr) ribbons yield coercivities of 10.0 kOe and 7.9 kOe, respectively. This is the highest value among the reported melt-spun ThMn12-type structure ribbons. The importance of Sm atmosphere during annealing in minimizing the Sm evaporation from ribbons is also demonstrated  相似文献   

10.
Investigation has been carried out to find the effects of Nd substitution and Cu addition on the hydrogen storage properties of AB5-type alloy with a multicomponent La0.6M0.4Ni4.8Mn0.2 (M=Y, Nd) system. La0.6Y0.4Ni4.8Mn0.2,which was used in an air-conditioning system, showed poor hysteresis and sloping characteristics, which led to a decrease concerning the coefficient of performance of the system. By the substitution of Nd for Y, the hydrogenstorage capacity increased, and the plateau pressure decreased a little, but the hydrogen absorption kinetics decreased dramatically. Cu addition can effectively improve the kinetics of hydride formation without changing the hydrogen storage capacity of La0.6Nd0.4Ni4.8Mn0.2. It has been found that La0.6Nd0.4Ni4.8Mn0.2Cu0.1 alloy showed good hydrogen storage characteristics for metal hydride air-conditioning system. The results showed that, for each component of La0.6Mo.4Ni4.8Mn0.2, the effective hydrogen storage capacity increased with decrease of the unit cell parameter c/a and the hydrogen absorption plateau pressure increased with decrease of the parameter a.  相似文献   

11.
磁场热处理对NdFeB非晶快淬粉末的晶化与磁性的影响   总被引:6,自引:0,他引:6  
研究了外中磁场对非晶Nd5.5Fe66B18.5Cr5Co5,Nd4.5F377B18.5和Nd10.5Fen70B7.0Zr2.5Co10粉末的晶化与磁性的影响,发现在热处理过程中加磁场可促进淬非晶粉末的晶化,使相转变在较低的温度下进行,讨论了各向异性复合纳米永磁材料可能的制备方法。  相似文献   

12.
采用单辊急冷法制备(Fe_(0.52)Co_(0.30)Ni_(0.18))_(73)Cr_(17)Zr_(10)非晶薄带,并对该合金进行等温退火。采用XRD,AFM,VSM研究退火温度对(Fe_(0.52)Co_(0.30)Ni_(0.18))_(73)Cr_(17)Zr_(10)非晶合金的组织结构和磁性能的影响。结果表明:非晶合金晶化过程为Am→α-Fe(Co)+Am′→α-Fe(Co)+Cr_2Ni_3+Fe_3Ni_2+Cr_2Zr+未知相。当退火温度Ti玻璃转变温度Tg时,由于结构弛豫、内应力的释放,合金的饱和磁化强度Ms有所提高;当晶化起始温度TxTi第一晶化峰值温度Tp1时,由于铁磁性α-Fe(Co)相的析出,Ms显著提升;当TiTp1时,由于晶粒长大和第二相的析出,Ms急剧恶化,565℃退火能够获得最好磁性能(Ms=106.8A·m~2·kg~(-1))。490℃和565℃退火后薄带表面的AFM观察表明,AFM图片所呈现的颗粒尺寸要比用Scherrer法测得的α-Fe(Co)纳米晶尺寸大得多,这是典型的包裹晶粒现象。  相似文献   

13.
The corrosion behaviour of melt-spun Nd-Fe-B alloy ribbons in which Fe was replaced with Co and Ni and small quantities of Al and Ti added was investigated from the viewpoint of anodic corrosion, Although the addition of Ni degraded the magnetic properties of melt-spun ribbons, it improved corrosion resistance. According to EDXS and AES analyses, the corrosion products on the surface of Ni-free ribbons consisted of Nd and Fe oxides, but the Nd oxide corrosion product almost disappeared in the Ni-added samples. Also, the degradation of magnetic properties after the corrosion test was suppressed by the addition of Ni.From these results, it was thought that the improvement of corrosion resistance and the smaller degradation of magnetic properties of Nd-(Fe·Co·Ni)-B-(Al·Ti) ribbons after the corrosion test were associated with the suppressed dissolution of the Nd-rich phase at the grain boundaries.The oxidation of Ni-added melt-spun ribbons also showed similar characteristics and behaviour to the corrosion test in the morphologies of the ribbon surface and magnetic properties after the oxidation test.  相似文献   

14.
研究了溶体快淬三元La_2Fe_(14)B和Ce_2Fe_(14)B合金的相析出行为和磁性能,对不同快淬速度(10~50 m/s)和不同热处理温度下制备的样品进行了系统分析。结果表明,通过直接快淬,La_2Fe_(14)B合金中不能形成2∶14∶1硬磁相,而Ce_2Fe_(14)B合金可以获得2∶14∶1相。La_2Fe_(14)B合金在10m/s快淬时主要由La和α-Fe相组成,而Ce_2Fe_(14)B合金中2∶14∶1硬磁相在10m/s和20m/s快淬时析出。随着辊速的增加,非晶相逐渐增多并成为主相。在热处理过程中,La_2Fe_(14)B合金析出相以α-Fe和La相为主,并且高温下液态的富La相和α-Fe相可以共存;而Ce_2Fe_(14)B合金中先析出α-Fe,后析出2∶14∶1硬磁相,随后析出相长大。结果还表明,La_2Fe_(14)B比Ce_2Fe_(14)B有更高的非晶居里温度和更低的α-Fe相析出温度。由于硬磁相的析出,Ce_2Fe_(14)B合金可以获得较好的硬磁性能,包括一定的矫顽力。此研究对含La、Ce稀土永磁材料的生产具有一定的指导作用。  相似文献   

15.
Magnetic properties, phase evolution, and microstructure of melt spun Hf-substituted Sm(Co0.97Hf0.03)(x)Cy (x = 5-9; y = 0-0.1) ribbons quenched at the wheel speed of 40 m/s are investigated. X-ray diffraction analysis shows that the main phases existed in Sm(Co0.97Hf0.03)(x) ribbons are 1:5 phase for x = 5-5.5; 1:5 and 1:7 phases for x = 6; 1:7 phase for x = 6.5-7.5; 1:7 and 2:17 phases for x = 8; and only 2:17 phase for x = 8.5-9, respectively. For Sm(Co0.97Hf0.03)(x) (x = 5-9) ribbons, the optimum magnetic properties of B(r) = 5.6 kG, (i)H(c)= 15.6 kOe and (BH)(max) = 7.1 MGOe are obtained for Sm(Co0.97Hf0.03)6.5 ribbons. Furthermore, a slight amount of C addition in Sm(Co0.97Hf0.03)(x) ribbons slightly modify phase constitution and effectively refine the grain size from 200-700 nm for C free ribbons to 10-70 nm, strengthening the exchange coupling effect between magnetic grains of the ribbons. As a result, magnetic properties are further improved. The magnetic properties of B(r) = 6.9 kG, (i)H(c) = 9.2 kOe and (BH)(max) = 10.0 MGOe can be achieved for Sm(Co0.97Hf0.03)7.5C0.1 nanocomposites.  相似文献   

16.
1. IntroductionThe Fe-based amorphous alloy is a kind of important soft magnetic materials. Fe-St-B system amorphous alloys containing about 80 at. pci Fe havethe highest saturation magnetization induction. Thereseachers in the world pay a great attention to it.In order to enhance some magnetic properties to satisfy the demand of the different applications, the alloy compositions and the technological processes wereinvestigatedll~4]. In this article, the effect of alloy elements on the magne…  相似文献   

17.
Structural and magnetic properties of Nd15Fe70T15Nδ(T=V, Mo) alloys, made by mechanical alloying (MA) followed by heat-treatment and nitriding, have been investigated systematically.Effects of annealing temperature on the structure and magnetic properties of the materials were studied by means of X-ray diffraction, AC susceptibility and high field magnetization measurements. Under pure argon atmosphere, the optimum temperatures for the heat treatment are found to be 75 and 850℃ for Nd15Fe7015Nδ and Nd15Fe70Mo15Nδ respectively. Correspondingly, the following magnetic properties are achieved : (1) Nd15Fe70V15Nδ:Br=0.63 T,,HC=8.01kA/cm (10.1 kOe), (BH )max=50.3 kJ/m3 (6 32 MGOe), (2) Nd15Fe70Mo15Nδ :Br=0.42 T. iHc=5.6 kA/cm (7.4 kOe), (BH )max=26.6 kJ/m3 (3.34 MGOe)  相似文献   

18.
In this study, the microstructure and mechanical properties of Fe–Ni–Mn–Mo–Ti–Cr maraging steel at low temperature and prolonged aging condition were investigated. Optical and scanning electron microscopy examinations, tensile and hardness tests were conducted to study the microstructure, aging behavior and mechanical properties of the cold‐rolled steel. The results showed that aging of cold rolled Fe–Ni–Mn–Mo–Ti–Cr maraging steel resulted in the formation of Mo rich and Ti rich Lave phase precipitates. Existence of many dislocation cores due to cold rolling and subsequently, low temperature aging caused to formation of uniform distribution of very fine precipitates. The presence of these precipitates increased the yield and ultimate tensile strengths but couldn't improve the uniform tensile ductility. This alloy showed ultra‐high fracture stress of about 1950 MPa with a negligible tensile elongation (about 2 %) at the peak aged condition. The fractographic studies indicated this alloy shows semi‐brittle fracture in the subsequent aging treatment.  相似文献   

19.
The soft magnetic properties are reported for newly-developed nanocrystalline Fe72.7Cu1Nb1.8-Mo2Si13B9.5 and Fe73Cu1Nb1.5Mo2Si13B9.5. The high frequency core losses of the new alloys are as follows: P3/100K=473 kW·m-3, P2/200K=750 kW·m-3, P2/500K=3400 kW·m-3,P0.5/1000K=680 kW·m-3, which are clearly lower than those of the early-developed Fe-Cu-Nb-Si-B nanocrystalline alloys and the superior power MnZn ferrite H7.4. The dependences ofcore loss on frequency and amplitude magnetic flux density have been analysed. The temperature relations of initial susceptibility have been examined for as-quenched and different annealedFe72.7Cu1Nb1.8Mo2Si13B9.5 alloy and interpreted by using the phenomenological theory.  相似文献   

20.
Effect of dopants on the soft magnetic properties and high frequency characteristics of FeCoBM thin films (M = Ti, Nb, Hf, and Ta) have been studied. For (Fe0.55Co0.45)(100-x)B(x) (x = 5-15) thin films, with the increase of B content, the resistivity was increased because B could decrease the crystallinity of the films. The (Fe0.55Co0.45)90B10 thin film showed the optimum properties, where 4piM(s) = 16.1 kG, H(ce) = 64.2 Oe, H(ch) = 13.5 Oe, H(k) = 310 Oe and p = 338 microomega-cm. To reduce the coercivity of the film, the elements M, including Ti, Nb, Hf, and Ta, were selected to substitute for B in the FeCoB films. It was found that (Fe0.55Co0.45)90B6Ti2Nb2 thin film after annealing at a temperature of 200 degrees C for 30 min showed the optimal properties, where 4piM(s) = 15.8 kG, H(ce) = 4.8 Oe, H(ch) = 3.6 Oe, H(k) = 224 Oe and p = 290 microomega-cm. The theoretically calculated ferromagnetic resonance frequency of the developed films can be higher than 5 GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号