首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
磁电极化低温等离子体降低汽油机排放   总被引:1,自引:1,他引:0  
依据气体分子磁性理论与电极性理论及沿面放电方式产生空气等离子体的反应机理,试制出一种新型的磁电极化等离子体净化装置,并在发动机台架上进行了试验.结果表明,对进入发动机的空气进行等离子化,可以大大地改善发动机的燃烧特性,降低排气中的有害污染物.该装置结构紧凑、效果好、成本低,对于汽车摩托车尾气排放控制,具有很好的应用前景.  相似文献   

2.
由于喷煤量的提高,高炉煤气中的氢含量增加,氢的还原作用增大.本文实验研究了球团矿在不同氢体积分数的还原气体和还原温度下的还原度,并利用未反应核模型,分析了球团矿富氢还原的动力学.实验结果表明,还原气体中氢体积分数的增加可以提高球团矿的还原速率;由于煤气流速较快,外扩散不是还原反应的限制性环节;还原初期为内扩散控制或是内扩散和界面反应混合控制;还原中后期,为内扩散控制,当还原度达到10%时,不同条件的球团矿富氢还原的限制性环节都是内扩散.  相似文献   

3.
氢气随车携带不便,为了能在线产生富氢气体供给内燃机燃烧,并大幅度提高内燃机的热效率,降低排放,降低热、噪声的污染,提出应用内燃机尾气余热对甲醇进行催化重整以产生氢气的方法.设计了一套内燃机余热甲醇催化重整制氢装置,在内燃机排气余热和催化剂的共同作用下,把甲醇水溶液重整成富氢气体.重整反应器为蜂窝陶瓷载体,重整催化剂为Cu/Zn/Al/Zr,采用管式换热器对载体进行加热,甲醇水溶液在载体孔道中发生催化重整反应.实验结果表明:随着发动机排气温度的增加,重整器产氢率提高,在排气温度为350℃时,重整气中氢气的体积分数达到41.9%.达到了实验预期要求.  相似文献   

4.
通过光谱测量系统所测得的工频交流电压下水中电弧等离子体的光谱相对强度,用双线法得到了等离子体中的电子激发温度,并依据局部热力学平衡(LTE)条件,用Saha方程求得了等离子体的电子密度和H、H+、O、O+等粒子的密度,且等离子密度随着电弧功率的增加而增大.该实验为水中交、直流电弧特性或交流气体电弧等离子体特性的研究提供了参考.  相似文献   

5.
生物质制氢与燃料电池的技术整合将提供一条完全清洁的后续能源路线,并能够为生物质能源的高效经济利用开辟具有竞争力的创新途径,为氢能技术的发展提供有利保障.在对生物质热化学制氢的工艺路线和过程经济性等进行对比分析的基础上,明确了制氢路线开发中的优化方向;对生物质燃气在高温燃料电池系统中应用的诸多影响因素进行了系统分析,并结合目前国内外生物质基燃料电池系统的研究进展,明确了适宜的生物质制氢与燃料电池系统的整合工艺开发中需要克服的障碍和路线的发展方向.  相似文献   

6.
氢气在汽车燃油替代能源方面的应用   总被引:1,自引:1,他引:0  
重点阐述氢气作为汽车替代能源方面的应用特点和应用方式.总结了氢气的制备和车载储存的方法及其技术难点.对燃料电池发动机、氢发动机和掺氢燃料发动机的最新技术进展以及面临的问题进行了分析研究和总结,并概括和预测了未来的发展方向.  相似文献   

7.
乙醇水蒸气重整制氢的车载应用不但可在线产生富氢气体,解决氢气的储运问题,还可实现混富氢气燃烧,降低排放.为得到较优的重整制氢方案,模拟内燃机尾气温度条件,在燃料重整试验台上实现乙醇的水蒸气催化重整制氢过程.在不同催化剂Cu49Zn21Al18Zr12和Pt/CZO/Al2O3条件下,考察了反应温度、水醇摩尔比和空速对重整气中φ(H2)的影响.研究表明:当反应温度为723~973 K、空速为720 h-1、水醇摩尔比分别为6∶1和4∶1时,二者φ(H2)的平均值分别为47.78%和40.26%.催化剂Pt/CZO/Al2O3重整制氢的产量高于Cu49Zn21Al18Zr12,尤其是在823 K以上的高温区域.但是与Pt/CZO/Al2O3相比,Cu49Zn21Al18Zr12成本低廉,在873 K以上的温度区域,重整气中φ(H2)也相当高.因此,基于Cu49Zn21Al18Zr12催化剂的乙醇水蒸气重整对于车载制氢更加具有可行性.  相似文献   

8.
生物质热化学转换制氢的研究进展   总被引:2,自引:0,他引:2  
生物质资源丰富,对环境的友好性以及可再生性受到了越来越广泛的重视.氢,清洁无污染,高效,可存储和运输,被视为最理想的能源载体和将来矿物燃料的可替代能源.生物质热化学转化制取富氢气体的技术路线也为氢能源系统的发展提供了广阔的前景.论述了生物质热化学转换制氢中热解制氢和气化催化制氢2种技术路线,当前存在的问题,研究进展以及解决的方法,并对未来的发展和应用前景做出了一定的预测.  相似文献   

9.
氢气以清洁燃烧的特点成为理想的发动机代用燃料.为研究不同喷氢时刻下氢发动机混合气形成的过程,应用AVL Fire软件建立进气道燃料喷射氢发动机的三维仿真模型.分析缸内外浓度场、速度场的变化规律,从抑制回火等抑制异常燃烧的角度,综合评价混合气的形成状况.并以混合气均匀性系数、有效喷氢率为指标优化了高速、大负荷工况下进气道喷射氢发动机的喷氢时刻.  相似文献   

10.
以色列科学家新发明了一种装置.可以在汽车上用水产生氢来驱动汽车.使之成为零排放交通工具。这种装置的工作原理是:通过水和硼发生反应产生氢.氢再进入内燃机燃烧或装入一个燃料电池发电。科学家称.为使硼和水发生反应.必须先把水加热到数百摄氏度.使其变为蒸汽。因此.车辆仍然需要某种启动动力.如电瓶。当发动机启动后.硼和水经过氧化反应产生的热量能为进入发动机的水加热,产生的氢则可从发动机转移并储存起来.用作启动燃料。氢在内燃机中燃烧或在燃料电池中反应时产生的水也可以收集并循环到车辆的燃料箱里.使得整个过程在车上完成,真正做到无排放。硼和水产生的唯一副产品氧化硼可以再加工,转变成硼并循环利用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号