首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 198 毫秒
1.
采用化学镀方法在TC4钛合金表面制备了Ni-P镀层,通过不同的退火温度处理试件,研究了影响镀层结合力的影响因素。用SEM分析了不同温度处理后镀层的结构从而建立不同热处理温度、保温时间与扩散层厚度的动力学方程;采用X射线衍射研究了扩散界面的产物及不同退火温度对镀层的热应力的影响。结果表明:400℃,2h、400℃,4h热处理之后无扩散层出现;在500℃,2 h、500℃,4 h、600℃,2 h、600℃,4 h、700℃,2 h、700℃,4 h热处理后均出现扩散层,并根据扩散层的厚度与热处理温度和时间的关系推导出其扩散的动力学方程:y=2.72 exp(-6353/T)t;不同温度热处理后Ni-P镀层的热应力显著增加;热处理后镀层的结合力有所增加,400℃,2h、400℃,4h、500℃,4h热处理后镀层与基体的结合力最好。  相似文献   

2.
采用化学镀方法在AZ91D压铸镁合金表面获得N i-P镀层,研究了不同热处理温度对镀层的组织和性能的影响。结果表明:镍层中P含量为6.22 wt%,镀层组织为非晶+少量纳米晶组织。随热处理温度升高原始镀层中的非晶组织中先形成镍纳米晶,然后纳米晶镍伴随晶化过程进行迅速长大,并在镍基体上析出N i12P5和N i3P相。镀层与基体的结合强度在350℃附近达最大结合强度为3.7 MPa,镀层硬度在400℃附近达最大值为825 HV;盐雾腐蚀实验表明镀层耐腐蚀性能良好,连续盐雾8 h未出现腐蚀斑点。经过不同的热处理,镀层的耐蚀性随着热处理温度的提高而下降。  相似文献   

3.
用化学镀的方法制备了不同粒径的镍-钨-磷/Al2O3复合镀层,研究了热处理温度对镀层硬度和磨损性能的影响,并将含有50 nm、500 nm、1~3 μm Al2O3粒径的复合镀层的性能进行对比.结果表明:含有50 nm Al2O3粒径的复合镀层具有更高的硬度和耐磨性,经400 ℃处理后的镀层耐磨性最好.  相似文献   

4.
锡青铜化学镀 Ni-P 合金工艺及镀层性能   总被引:1,自引:0,他引:1  
目的在锡青铜基体上化学镀Ni-P合金镀层,提高锡青铜的耐磨性和耐腐蚀性。方法以酸性含锌活化液活化锡青铜试样,在相同的条件下实施化学镀,并对镀态试样进行不同温度(250,400,500℃)下的热处理。对比基体、镀态试样和热处理试样的性能,研究热处理温度对锡青铜化学镀Ni-P合金层微观结构、显微硬度、耐磨性和耐腐蚀性的影响。结果锡青铜表面形成了Ni-P合金镀层,并且镀层无孔隙缺陷,与基体结合良好,沉积速率较快,为10.00μm/h。经热处理后,镀层的微观结构由非晶态向晶态转变,在500℃热处理的镀层显微硬度最大,耐磨性最好。镀态镀层和经250℃热处理的镀层在10%HNO3溶液和10%H2SO4溶液(10%均为体积分数)中的耐腐蚀性明显好于锡青铜基体,镀态镀层在两种介质溶液中的腐蚀速率分别为0.225,0.146 mg/(cm2·d)。结论采用酸性含锌活化液活化锡青铜基体,可以在锡青铜表面制备出化学镀Ni-P合金镀层,且镀覆效果较好。这表明紫铜化学镀Ni-P合金工艺同样适用于锡青铜。  相似文献   

5.
利用两步法制备得到纳米金属镍粉末。首先以氯化镍为原料在钠-氨溶液内通过还原-氮化反应制备得到纳米氮化镍粉末,然后通过真空热分解成功制备出纳米尺度的金属镍粉末。研究表明:钠-氨溶液内制备得到的纳米氮化镍粉末为六方结构,其平均晶粒尺度为19 nm;在300℃条件下进行真空热处理后,纳米氮化镍粉末完全分解,获得立方结构的纳米金属镍粉末,其平均晶粒尺度为21.4 nm,比表面积为30.5 m2·g-1;在300~700℃真空热处理过程中,纳米金属镍粉末的平均晶粒尺度增大为36.8 nm,比表面积减小为13.2 m2·g-1。  相似文献   

6.
在化学镀过程中施加强磁场法,使Ni-P镀层的热稳定性得到提高。通过XRD和DSC分析,发现在0、4T条件下获得的Ni-P镀层均为磷在镍晶格的过饱和固溶体结构。通过在真空加热炉内将化学镀Ni-P镀层加热至200、300、350℃,并保温1h的热处理法考察其热性能。在200℃以下,4T强磁场下化学镀获得的Ni-P镀层热稳定性较无磁场条件下化学镀获得的Ni-P镀层高。  相似文献   

7.
在镍磷化学镀的基础上,研究了微米、纳米金刚石化学复合镀工艺。采用正交试验方法,研究化学镀液、金刚石种类与浓度、表面活性剂种类与含量以及热处理温度等因素对镀层显微硬度的影响。结果表明:对镀层硬度影响明显的因素依次为金刚石种类、表面活性剂种类、热处理温度和表面活性剂含量,而镀液种类和金刚石浓度对镀层硬度的影响较小。最佳工艺为:金刚石为纳米金刚石灰粉,添加阴离子表面活性剂,热处理温度为350℃,表面活性剂含量为1∶10,选用化学镀液B,金刚石浓度为6.0g/L。  相似文献   

8.
为研究聚氨酯泡沫化学镀镍在超声波处理条件下的最优工艺,探讨不同超声波功率对聚氨酯泡沫化学镀镍沉积速率和电阻率的影响,并在超声波频率25Hz、功率90W下设计正交试验,确定聚氨酯泡沫化学镀镍的最佳工艺条件。利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)和热震试验等手段分别对镀镍聚氨酯泡沫的表面形貌、晶型结构和镀层的结合力进行表征。结果表明:随着超声波功率的增大,化学镀镍的沉积速率加快,在超声波功率为90W时,沉积速率增加趋势减慢,电阻率得到最小1.3Ω.cm。通过正交试验得出:当NiSO4浓度为35g/L,NaH2PO2.H2O浓度为20g/L,Na3C6H5O7.2H2O浓度为20g/L,pH为9,温度45℃,施镀时间为40min时,工艺条件最优。在最佳工艺条件下进行施镀,聚氨酯泡沫镀层光亮、均匀、覆盖完全,导电性和结合力良好。  相似文献   

9.
空心玻璃微珠表面镀覆金属合金层(如铁、镍、钴)能大大改善其电磁损耗性能。采用钯活化和化学镀镍工艺制备了空心玻璃微珠表面镀镍层,并对其进行了450℃热处理。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)及其附带能谱仪(EDS)对镀镍和热处理过程中的空心玻璃微珠镀层结构、表面形貌和成分进行分析,采用矢量网络分析仪对镀镍及热处理空心玻璃微珠的吸波性能进行研究。结果表明:采用化学镀技术在空心玻璃微珠表面包覆了一层均匀致密的镍镀层,镍含量高于95.48%,其晶体结构为面心立方,镀层结合力良好;经450℃热处理后,镀层粗糙度变大,增强了Ni-P镀层的晶化,并使晶粒长大,降低镀镍空心玻璃微珠的反射率,在15GHz处,450℃热处理的镀镍微珠反射率最低为-3.8dB,与热处理前相比,反射率降低差值为1.1dB。  相似文献   

10.
《铸造技术》2017,(3):577-580
采用化学镀的方法在HRB400岩土锚杆钢表面制备了Ni-P镀层,研究了热处理温度对化学镀层物相、表面形貌、显微硬度、耐磨性能和耐腐蚀性能的影响。结果表明,随着热处理温度的升高,镀层中的Ni3P数量有所增多,且镀层结构不断从非晶态转变为混晶结构、最后转变为比较稳定的晶态结构;表面化学镀可有效提高表面显微硬度;随着热处理温度升高,镀层的显微硬度逐渐增加;当热处理温度为400℃时镀层的耐磨性能和耐腐蚀性能最佳。  相似文献   

11.
热处理对钛基化学镀Ni-P镀层性能的影响   总被引:4,自引:2,他引:2  
为了改善钛合金耐磨性,利用化学镀法在钛基表面获得Ni-P合金镀层,着重考察了热处理温度对镀层腐蚀和磨损性能的影响.采用XRD、SEM、EDS等手段分析了镀层的结构、表面形貌及组成.通过磨损量和在HC1溶液中极化曲线分析了镀层的耐蚀和磨损性能.结果表明,镀态下镀层是胞粒状堆积形式,属非晶结构,磷含量为6.9wt%;随着热处理温度变化其耐蚀性存在最佳值,250℃×1h热处理后的Ni-P镀层,在1mol/L HC1溶液中的腐蚀电流和腐蚀电位分别为0.0129mA/cm2和-0.427V,耐腐蚀性能优于其它镀层;镀层硬度随热处理温度的升高先增加后降低,磨损量则呈相反趋势,400℃硬度达到最高值960.5HV,磨损量最低值达到15.6mg,此时镀层为晶态结构,表面呈弥散状态;热处理可提高钛基化学镀层的耐磨性.  相似文献   

12.
采用化学镀方法制备了质量分数为11.64%的高磷镀层。借助扫描电镜、XRD射线衍射仪对热处理后的镀层进行表面形貌和物相结构分析;采用PARM273A电化学测量系统对镀层的耐腐蚀性进行了测试。研究结果表明:随热处理温度的升高,镀层的耐蚀性先增大后减小,400℃×1 h热处理后,镀层耐蚀性最好。热震试验表明:镀层与基体具有良好的结合力。  相似文献   

13.
在镍磷化学镀的基础上,研究了微米、纳米金刚石化学复合镀工艺。采用正交试验方法,研究化学镀液、金刚石种类与浓度、表面活性剂种类与含量以及热处理温度对镀层耐磨性能的影响。通过超声搅拌,实验成功制备出具有优异耐磨性能的Ni-P-金刚石复合镀层。结果表明:对镀层耐磨性影响明显的因素依次为表面活性剂的种类和含量,金刚石颗粒的含量和种类,而镀液的种类和热处理温度对镀层耐磨性的影响较小。并且,最佳工艺为:添加阴离子表面活性剂,含量为1:15,复合颗粒为金刚石微粉,浓度为10g/L,镀层热处理温度为400℃。  相似文献   

14.
将表面经过Ni-Fe-P化学镀的35CrMo钢在不同温度下进行热处理,通过XRD、显微硬度计、电化学试验等手段研究热处理温度对镀层性能的影响。结果表明,经热处理后,镀层具有较高的硬度,400 ℃时,达到最高值881.7 HV0.5;经过热处理的镀层与基体有很好的结合力;镀层经200 ℃热处理后耐蚀性能提高,经400 ℃热处理后镀层耐蚀性降低,当热处理温度增加到600 ℃时,镀层的耐蚀性有所回升。  相似文献   

15.
化学镀镍-铜-磷三元合金层的制备及其组织与性能研究   总被引:3,自引:0,他引:3  
对45钢表面用化学镀方法镀镍-铜-磷三元合金层,采用金相显微镜、扫描电镜能谱分析、X射线衍射和显微硬度计研究了镀层的组织、相结构和性能.结果表明,600℃×1 h热处理后,镀层由Ni基固溶体、Ni3P和Cu3P化合物相组成;镀层的硬度随着热处理温度升高先增大后降低,400℃热处理后的硬度最高;在相同的模拟酸性腐蚀条件下,Ni-Cu-P三元合金化学镀层与1Cr18Ni9不锈钢相比,具有更加良好的耐腐蚀性能.  相似文献   

16.
利用化学镀方法在NdFeB磁性材料表面制备了非晶态Ni-Cu-P合金镀层,并运用X射线衍射(XRD)研究了不同温度热处理后(200、300、350、380、400、500℃)非晶态镀层结构的变化。结果表明:随着加热温度从200℃增加到500℃,镀层结构由镀态下的非晶态结构逐渐转变为晶态结构,晶态转变温度为350~380℃;镀层硬度由非晶态的486.9 HV0.1增加为晶态的766.4 HV0.1。  相似文献   

17.
热处理对化学沉积Ni-Zn-P-TiO2复合镀层的影响   总被引:1,自引:0,他引:1  
采用化学沉积方法获得Ni-Zn-P-TiO2复合镀层.采用X射线衍射、扫描电子显微镜、能谱分析等手段对复合镀层进行表征,研究了不同热处理状态下复合镀层的显微硬度、耐蚀性及耐冲蚀特性.结果表明,复合镀层由锐钛矿的纳米TiO2颗粒和过饱和的镍固溶体所构成.对经过不同热处理温度后复合镀层的分析表明,300℃以下热处理时,复合镀层衍射图无明显变化;加热至400℃时,有Ni3P析出;加热至500℃时,有Ni5Zn12析出.经400℃×1 h热处理,复合镀层具有最大的硬度值.复合镀层经300℃×1 h热处理后质量损失最低,有最好的耐蚀性能.在介质流速为36 ml/s、冲击角度为45.条件下,经过300℃× 1 h热处理后的复合镀层质量损失最低.  相似文献   

18.
Ni-W-P-SiC化学复合镀层孔隙率的研究   总被引:2,自引:0,他引:2  
研究了化学镀Ni-W-P-SiC复合镀层的孔隙率.结果表明,镀液温度和施镀时间对镀层孔隙率的影响较大,在镀液T=80℃、施镀时间t=2.5h时所得镀层的孔隙率较小;热处理温度和时间对镀层孔隙率有一定影响,热处理温度为400℃,时间为3h时,镀层孔隙率最小.  相似文献   

19.
化学镀Ni-P合金在铝合金表面强化上的应用   总被引:5,自引:0,他引:5  
研究了化学镀镍–磷合金的性能,结果表明,热处理温度对镍–磷合金镀层硬度和 耐磨性有较大的影响,二者经400℃× 1 h热处理后达到峰值;镍–磷合金在酸、碱、盐介 质中的耐蚀性优于1Cr18Ni9Ti不锈钢。应用结果证明,化学镀Ni–P合金在铝合金零部件上 具有广泛的应用前景。  相似文献   

20.
孙杰  张兴伟  明庭云  谭勇 《表面技术》2018,47(4):196-200
目的在钛合金表面化学镀镍磷厚镀层,并研究稀土的引入对镀层性能的影响。方法使用SEM及EDS对化学镀层的厚度及成分进行测试;使用XPS对镀层中的稀土元素价态进行分析;使用XRD对不同热处理方式的镀层进行组成分析;使用显微硬度仪测试经热处理的镀层的硬度;通过电化学测试对钛合金及经热处理的镀层进行耐蚀性分析。结果经稀土改性的厚镀层由70μm厚的Ni-P层和30μm厚的Ni-P-Ce层组成。镀层由Ni、P及Ce三种元素组成,其各自的质量分数分别为89.94%、10.03%和0.03%,且铈由+4、+3和0三种价态构成。随着热处理温度的升高,镀层逐渐由非晶态转变为晶态,该转变发生于200~300℃,且成分也发生了变化;镀层的硬度增加,经400℃热处理的镀层硬度大约为1000HV。镀层的存在可以有效提升钛合金基材的耐蚀性,但是随着热处理温度的增加,耐蚀性大幅降低,最佳热处理温度为200℃(其腐蚀电流密度和极化电阻分别为0.2445μA/cm~2、155.464 k?)。结论经稀土改性的镀层为100μm厚的厚镀层。稀土元素铈与镍、磷在钛合金上发生了共沉积。热处理温度对镀层的结晶方式和成分都有影响,对镀层硬度具有明显的影响,对镀层的耐蚀性能影响较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号