首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
热压制备Ti3SiC2/MgAl2O4复合材料及其性能研究   总被引:1,自引:1,他引:0  
采用反应热压烧结法制备Ti3SiC2/MgAl2O4复合材料,研究MgAl2O4含量对该复合材料致密化程度、显微结构以及力学性能的影响。结果表明:MgAl2O4和Ti3SiC2两相之间具有很好的化学相容性;MgAl2O4的引入对该复合材料的烧结致密度影响不明显;MgAl2O4晶粒镶嵌在Ti3SiC2晶粒的层片之间,相互穿错搭接,可以有效地阻止裂纹的扩展;适当的MgAl2O4可以改善复合材料的力学性能,当MgAl2O4的质量分数为20%时,其抗弯强度达到421.4 MPa,当MgAl2O4的质量分数为10%时,其断裂韧性达到4.27 MPa.m1/2。  相似文献   

2.
内氧化法制备Al2O3/ Cu复合材料   总被引:15,自引:2,他引:13  
Al2O3/Cu复合材料不仅具有和纯铜一样优良的导电、导热性能,而且由于弥散强化的作用使其拥有高的硬度和强度,特别是优越的高温强度,从而使其成为越来越重要的工程材料之一。论述了Al2O3/Cu复合材料的强化机理及Cu-Al合金的内氧化机理,重点阐述丁内氧化过程中Al2O3颗粒的形核、长大和粗化,并采用内氧化法制备了性能优越的Al2O3/Cu复合材料。  相似文献   

3.
常压烧结制备Al2O3/SiC纳米复合陶瓷及其显微结构的研究   总被引:4,自引:0,他引:4  
以微米SiC颗粒和工业氧化铝为原料,采用机械混合法制备Al2O3/SiC复合粉末。将复合粉末煅烧、成型,在1 600℃,2h烧结可制备出Al2O3/SiC纳米复合陶瓷。通过XRD、DSC-TG、SEM和TEM等分析了煅烧和烧结过程中相组成的变化,烧成收缩和微观结构,结果表明:在氧化铝基体中添加80%(质量分数)平均粒径为5μm的SiC粒子,复合粉末经700℃煅烧后再成型,试样于1 600℃烧结,其相对体积质量可达93.8%。SiC粒子主要被包裹在Al2O3晶内形成“晶内型”纳米复合陶瓷。在烧结过程中由SiC氧化形成的SiO2包裹层与基质氧化铝反应形成的无定形莫来石前躯体可大大促进烧结;SiC埋料氧化形成的外壳可有效阻止烧结体内SiC的进一步氧化。  相似文献   

4.
对不同成分配比的Fe2O3粉和Al粉末生坯分别进行900,1 000,1 100℃烧结,利用自蔓延反应放热和加热炉加热的综合作用制备FeAl/Al2O3复合材料。用扫描电镜、维氏硬度计、M-200型磨损试验机对烧结合金的金相组织、硬度以及磨损性能进行测试。结果表明:Fe2O3-Al在适当配比和烧结温度下,可以合成以FeAl为基体、Al2O3和铝铁金属间化合物为增强相的复合材料;试样烧结前后相对密度受Al含量和烧结温度的影响,Al含量越高,烧结温度越高,相对密度越大;Al的质量分数为40.3%,1 100℃烧结后的样品具有最高硬度和最佳耐磨性能。  相似文献   

5.
Al2O3基陶瓷材料的强韧化研究进展   总被引:2,自引:0,他引:2  
Al2O3的脆性极大地限制了其使用范围。综述了Al2O3增韧的几种方式及其机理,主要包括自增韧、颗粒弥散增韧、晶须(纤维)增韧、相变增韧和复合增韧。由于采取单一的增韧手段已不能制备出满足各种需求的材料,复合增韧将是Al2O3基陶瓷材料增韧的最主要的手段,采用纳米颗粒增韧技术制备纳米陶瓷是该研究领域的未来发展方向。  相似文献   

6.
利用热压烧结技术制备高致密度的短碳纤维增韧碳化硅陶瓷基(Csf/SiC)复合材料。研究稀土氧化物添加比对烧结后Csf/SiC复合材料微观结构、力学性能和增韧机制的影响。结果表明:随着烧结助剂中La2O3含量增加,烧结后材料中SiC颗粒平均粒径减小,相对密度逐渐降低,而强度和韧性则先增加后降低;颗粒桥连、纤维拔出和裂纹偏转是该材料体系的主要增韧方式 。  相似文献   

7.
利用热压烧结技术制备高致密度短碳纤维增韧碳化硅陶瓷基(Csf/SiC)复合材料。研究稀土氧化物添加比对烧结后Csf/SiC复合材料微观结构、力学特性和增韧机制的影响。结果表明:随着烧结助剂中La2O3含量增加,烧结后材料中SiC颗粒平均粒径减小,相对密度逐渐降低,而强度和韧性则先增加后降低;颗粒桥连、纤维拔出和裂纹偏转是该材料体系的主要增韧方式。  相似文献   

8.
以Ti、Si、炭黑为原料,通过引入Al2O3,采用热压法制备了Ti3SiC2/Al2O3复合材料。通过X-射线衍射仪、扫描电子显微镜和能谱分析研究了Ti3SiC2/Al2O3复合材料的氧化行为。结果表明:添加Al2O3的试样抗氧化性优于纯Ti3SiC2试样,这是因为在1 300℃之前,形成α-Al2O3、TiO2和SiO2的混合层,且α-Al2O3集中到氧化层表面呈连续分布,形成致密氧化层。而在1 300℃之后试样表面则生成Al2TiO5抗氧化层。  相似文献   

9.
采用热化学反应法,以Al2O3、SiO2及ZnO为主要原料,并添加金属铝粉末,在Q235钢上制备Al2O3基陶瓷涂层,研究Al添加量对涂层性能的影响。采用X射线衍射仪(XRD)、扫描电镜(SEM)对涂层的物相组成、表面形貌和磨损形貌进行分析,并对涂层热震性、致密性、耐磨性及耐蚀性进行测试。结果表明,经600℃固化后,涂层中有MgAl2O4、AlPO4、MgO.SiO2等新相产生。当Al添加量为9%时,涂层的抗热震性能和致密性最好,热震次数可达50次以上。当Al含量为3%时,涂层表现出最为优异的耐磨损性能,耐磨性比基体大为提高。在酸、碱、盐溶液中,涂层的耐蚀性比基体大为提高,并且当Al添加量分别为9%、1%、3%时的涂层表现最佳。  相似文献   

10.
Al2O3基陶瓷抗弹性能的研究   总被引:1,自引:0,他引:1  
以添加ZrO2的Al2O3基陶瓷材料为研究对象,经过成分优化设计以及成型、烧结工艺优化设计,制备出性能高且稳定的材料;并采用模拟穿甲弹和破甲弹对装甲钢、几种陶瓷材料进行了对比试验,测定了防护系数;并分析了几种材料抗穿、破甲弹防护系数不同的原因。  相似文献   

11.
采用超微Al2O3粉和热压烧结工艺制备出两种Al2O3基陶瓷(Al2O3-MgO-TiC、Al2O3-MgO-TiC-Y-PSZ)。研究了这两种材料烧结体的密度、显微组织和力学性能。并将烧成陶瓷加工成切削刀片,对35CrMnSiA超高强度调质钢进行切削试验,所得结果与其它几种陶瓷刀具的切削性能进行了比较。  相似文献   

12.
等离子喷涂Al2O3陶瓷涂层的结构与组织特征   总被引:32,自引:4,他引:28  
用 X射线衍射、扫描电镜等研究了等离子喷涂 Al2 O3 陶瓷涂层的相结构、相组成及其组织特征。金属粘结层与陶瓷涂层均呈层状结构 ,陶瓷涂层致密性较差、易出现微裂纹 ,金属粘结层相对致密、一般无裂纹。陶瓷涂层以亚稳相γ- Al2 O3为主要相 ,同时存在α- Al2 O3。另外 ,涂层设计对涂层硬度有一定影响  相似文献   

13.
对用流变铸造法制备的Al_2O_(3P)/ZA4-3复合材料的硬度特性进行了研究。结果表明,Al_2O_(3P)的加入明显提高了锌合金的室温和高温硬度:Al_2O_3颗粒含量、颗粒直径和环境温度是影响该复合材料硬度的重要因素。此外,还研究了150℃以下循环热处理以及淬火、回火处理对该复合材料硬度性能的影响。  相似文献   

14.
对用流变铸造法制备的Al_2O_(3P)/ZA4-3复合材料的硬度特性进行了研究。结果表明,Al_2O_(3P)的加入明显提高了锌合金的室温和高温硬度:Al_2O_3颗粒含量、颗粒直径和环境温度是影响该复合材料硬度的重要因素。此外,还研究了150℃以下循环热处理以及淬火、回火处理对该复合材料硬度性能的影响。  相似文献   

15.
采用内氧化法制备了Al2O3/Cu复合材料,研究了该复合材料在载流条件下的摩擦磨损特性,并进行了微观组织结构分析。结果表明:采用内氧化法制备的Al2O3/Cu复合材料,在铜基体中弥散分布着纳米级的Al2O3颗粒;在载流条件下,该复合材料的抗摩擦磨损性能显著优越于铬青铜合金;电流较小时具有磨粒磨损和粘着磨损的共同特征,电流较大时以粘着磨损为主。在试验范围内,电流较载荷对磨损率的影响显著。  相似文献   

16.
二硼化锆超高温陶瓷的研究进展   总被引:2,自引:0,他引:2  
二硼化锆超高温陶瓷具有高熔点、高硬度、高热导率等优良性能,是一种性能优异的高温结构材料,具有广泛的应用前景。概述二硼化锆陶瓷的国内外研究进展;重点综述二硼化锆陶瓷材料的应用、制备以及烧结致密化的研究现状。  相似文献   

17.
以粉末Ti,Si,TiC和炭黑为原料,采用反应热压烧结法制备TiC/Ti3SiC2复合材料。借助XRD和SEM研究TiC含量对TiC/Ti3SiC2复合材料相组成、显微结构及力学特性的影响。结果表明:通过热压烧结可以得到致密度较高的TiC/Ti3SiC2复合材料;引入TiC可以促进Ti3SiC2的生成,当引入TiC的质量分数达30%,TiC/Ti3SiC2复合材料的弯曲强度和断裂韧性分别为406.9 MPa,3.7 MPa.m1/2;复合材料中Ti3SiC2相以穿晶断裂为主,TiC晶粒易产生拔出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号