首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Implied Costs for Multirate Wireless Networks   总被引:1,自引:0,他引:1  
Implied costs for multirate wireless networks are calculated and their use is demonstrated for quantifying mobility, traffic load, call pricing, network optimization and for evaluating trade-offs between calls of different rates. User mobility is modeled by assigning call termination and call handoff probabilities. Fixed Channel Assignment (FCA) is used with priority for handoffs over new call arrivals by reserving a number of channels in all the cells. The performance measures used are new call blocking and handoff drop probabilities. The implied cost is calculated for the network net revenue, which considers the revenue generated by accepting a new call arrival into the network as well as the cost of a handoff drop in any cell. Simulation and numerical results are presented to show the accuracy of the model. The implied costs are used to suggest pricing techniques for different calls based on mobilities and bandwidth. Finally, a nonlinear constrained optimization problem is formulated to calculate the sum revenue for a given network by maximizing the net revenue using implied costs in a gradient descent algorithm. The implied cost analysis also shows that matching capacity distribution to not only exogenous traffic, but also to mobility can significantly increase revenue.  相似文献   

2.
The traffic performance of integrated 3G wide-band code division multiple access (WCDMA) and GSM/GPRS network is evaluated. This type of network links two cellular radio systems which have different set of frequency bands and the same coverage size. The base station of 3G WCDMA is installed on an existing GSM/GPRS site. Dual-mode mobile terminals use handoff to establish calls on the better system. The soft handoff or inter-frequency hard handoff occurs when mobile terminals of 3G WCDMA or GSM/GPRS move between two adjacent cells, respectively. The inter-system hard handoffs are used between 3G WCDMA and GSM/GPRS systems. The data rate conversions between different systems, soft handoff region size, multiple data rate multimedia services, and the effect of the mobile terminal mobility on the user mean dwell time in each system are considered in the study. The simulation results demonstrate that a great traffic performance improvement on the complementary use of 3G WCDMA and GSM/GPRS cellular radio networks compared with the use of GSM/GPRS cellular radio networks. When high-data rate transmission is chosen for low-mobility subscribers, both the handoff failure probability, and carried traffic rates increase with the new call generation rate. However, both rates decrease conversely with the increasing new call generation rate as soon as the new call generation rate exceeds a critical value. This causes the integrated networks saturation. The higher mean speed for the mobile terminals produces lower new call blocking probabilities and total carried traffic. The new call blocking probabilities and total carried traffic increase with the size of the soft handoff region.  相似文献   

3.
A promising approach for implementing channel assignment and control in cellular mobile telephone networks is the virtually fixed channel assignment (VFCA) scheme. In VFCA channels are allocated to cells according to the fixed channel assignment (FCA) scheme, but cells are allowed to borrow channels from one another. As such, VFCA maintains the efficiency of FCA, but adds the flexibility lacking in FCA. One feature of a VFCA network is that, to prevent co-channel interference, it requires several channels to be locked to serve a single call that borrows a channel. This feature raises the concern that VFCA may lead to chain reaction in channel borrowing among cells and cause the network performance to degrade, especially under heavy traffic conditions. In this paper, we propose the virtually fixed channel assignment with recall (VFCAWR) scheme: The network is implemented according to VFCA, but a cell can recall a locked channel to service an arriving handoff call, which occurs when a mobile unit crosses the boundary of its cell. We model the network as a three-dimensional Markov chain and derive its steady-state performance. Through modification of this basic model, we evaluate two dynamic channel assignment strategies, the virtual channel reservation (VCR) strategy and the linear switch-over (LSO) strategy, which exploit the unique borrowing/recall capability of VFCAWR to reduce the weighted cost of blocking fresh and handoff calls by reserving several virtual channels (the channels that may be borrowed from adjacent cells when necessary) for handoff calls. We validate the analytical models by simulation; the simulation test cases show that our models accurately predict the system performance measures of interest. Numerical and simulation results also show that both dynamic strategies outperform conventional channel reservation schemes based on fixed channel assignment and hybrid channel assignment. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Li  Bo  Lin  Chuang  Chanson  Samuel T. 《Wireless Networks》1998,4(4):279-290
In this paper, we propose and analyze the performance of a new handoff scheme called hybrid cutoff priority scheme for wireless networks carrying multimedia traffic. The unique characteristics of this scheme include support for N classes of traffic, each may have different QoS requirements in terms of number of channels needed, holding time of the connection and cutoff priority. The proposed scheme can handle finite buffering for both new calls and handoffs. Futhermore, we take into consideration the departure of new calls due to caller impatience and the dropping of queued handoff calls due to unavailability of channels during the handoff period. The performance indices adopted in the evaluation using the Stochastic Petri Net (SPN) model include new call and handoff blocking probabilities, call forced termination probability, and channel utilization for each type of traffic. Impact on the performance measures by various system parameters such as queue length, traffic input and QoS of different traffic has also been studied. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
As channel allocation schemes become more complex and computationally demanding in cellular radio networks, alternative computational models that provide the means for faster processing time are becoming the topic of research interest. These computational models include knowledge-based algorithms, neural networks, and stochastic search techniques. This paper is concerned with the application of a Hopfield (1982) neural network (HNN) to dynamic channel allocation (DCA) and extends previous work that reports the performance of HNN in terms of new call blocking probability. We further model and examine the effect on performance of traffic mobility and the consequent intercell call handoff, which, under increasing load, can force call terminations with an adverse impact on the quality of service (QoS). To maintain the overall QoS, it is important that forced call terminations be kept to a minimum. For an HNN-based DCA, we have therefore modified the underlying model by formulating a new energy function to account for the overall channel allocation optimization, not only for new calls but also for handoff channel allocation resulting from traffic mobility. That is, both new call blocking and handoff call blocking probabilities are applied as a joint performance estimator. We refer to the enhanced model as HNN-DCA++. We have also considered a variation of the original technique based on a simple handoff priority scheme, here referred to as HNN-DCA+. The two neural DCA schemes together with the original model are evaluated under traffic mobility and their performance compared in terms of new-call blocking and handoff-call dropping probabilities. Results show that the HNN-DCA++ model performs favorably due to its embedded control for assisting handoff channel allocation  相似文献   

6.
In this paper, a channel assignment scheme is proposed for use in CDMA/TDMA mobile networks carrying voice and data traffic. In each cell, three types of calls are assumed to compete for access to the limited number of available channels by the cell: new voice calls, handoff voice calls, and data calls. The scheme uses the movable boundary concept in both the code and time domains in order to guarantee the quality of service (QoS) requirements of each type. A traditional Markov analysis method is employed to evaluate the performance of the proposed scheme. Measures, namely, the new call blocking probability, the handoff call forced termination probability, the data call loss probability, the expected number of handoff and the handoff link maintenance probability are obtained from the analysis. The numerical results, which are validated by simulation, indicate that the scheme helps meet the QoS requirements of the different call types.  相似文献   

7.
A traffic model and analysis for cellular mobile radio telephone systems with handoff are described. Three schemes for call traffic handling are considered. One is nonprioritized and two are priority oriented. Fixed channel assignment is considered. In the nonprioritized scheme the base stations make no distinction between new call attempts and handoff attempts. Attempts which find all channels occupied are cleared. In the first priority scheme considered, a fixed number of channels in each cell are reserved exclusively for handoff calls. The second priority scheme employs a similar channel assignment strategy, but, additionally, the queueing of handoff attempts is allowed. Appropriate analytical models and criteria are developed and used to derive performance characteristics. These show, for example, blocking probability, forced termination probability, and fraction of new calls not completed, as functions of pertinent system parameters. General formulas are given and specific numerical results for nominal system parameters are presented.  相似文献   

8.
In future personal communications networks (PCNs) supporting network-wide handoffs, new and handoff requests will compete for connection resources in both the mobile and backbone networks. Forced call terminations due to handoff call blocking are generally more objectionable than new call blocking. The previously proposed guard channel scheme for radio channel allocation in cellular networks reduces handoff call blocking probability substantially at the expense of slight increases in new call blocking probability by giving resource access priority to handoff calls over new calls in call admission control. While the effectiveness of a fixed number of guard channels has been demonstrated under stationary traffic conditions, with nonstationary call arrival rates in a practical system, the achieved handoff call blocking probability may deviate significantly from the desired objective. We propose a novel dynamic guard channel scheme which adapts the number of guard channels in each cell according to the current estimate of the handoff call arrival rate derived from the current number of ongoing calls in neighboring cells and the mobility pattern, so as to keep the handoff call blocking probability close to the targeted objective while constraining the new call blocking probability to be below a given level. The proposed scheme is applicable to channel allocation over cellular mobile networks, and is extended to bandwidth allocation over the backbone network to enable a unified approach to prioritized call admission control over the ATM-based PCN  相似文献   

9.
Future Personal Communication Networks (PCN) will employ microcells and picocells to support a higher capacity, thus increasing the frequency of handoff calls. Forced call terminations due to handoff call blocking are generally more objectionable than new call blocking. The proposed guard channel schemes for radio channel allocation in cellular networks reduce handoff call blocking probability at the expense of increases in new call blocking probability by giving resource access priority to handoff calls over new calls in call admission control. Under uniform traffic assumptions, it has been shown that a fixed number of guard channels leads to good performance results. In a more realistic system, non-uniform traffic conditions should be considered. In this case, the achieved call blocking probability may deviate significantly from the desired objective. In this paper, we propose a new adaptive guard channel scheme: New Adaptive Channel Reservation (NACR). In NACR, for a given period of time, a given number of channels are guarded in each cell for handoff traffic. An approximate analytical model of NACR is presented. Tabu search method has been implemented in order to optimize the grade of service. Discrete event simulations of NACR were run. The effectiveness of the proposed method is emphasized on a complex configuration.  相似文献   

10.
A traffic management scheme is proposed in a multicode code-division multiple-access system supporting soft handoff that uses guard channels and a queue for real-time traffic. Preemptive queue control gives priority to queued handoff calls. Handoff traffic is derived as a function of the new call arrival rate, the size of the soft handoff region, mobile speed, the new call blocking probability, and the handoff failure probability. System performance with K types of calls is analyzed by introducing a concept of effective channel. The effects of the number of guard channels, the number of effective channels, system capacity, and other factors are numerically investigated. The effectiveness of the proposed queue control scheme is also observed in terms of handoff processing delay  相似文献   

11.
Channel carrying allows a mobile station to continue the use of its currently occupied channel when it hands off to a new cell. Since in a dynamic channel assignment (DCA) system, generally, any channel can be usedby any cell, channel carrying can be more easily implemented than in a fixed channel assignment (FCA) system which supports channel carrying through borrowing channels or extending channel reuse distance. Therefore, this paperinvestigates different channel carrying strategies maybe used in the distributed timid DCA scheme with the seamless handoff policy (DCA-DT/SLH), namely, channel carrying first (CCF) and channel carrying last (CCL). This study shows that (1) CCL generally outperforms CCF; (2) in DCA-DT/SLH without channel carrying,handoff calls may suffer higher dropping probabilities than new calls if no priority is given to handoff calls while channel carrying can easily avoidsuch undesirable situation; and (3) channel carrying in DCA-DT/SLH is comparableand even better than the guard channel (GC) in FCA and can also slightly improvethe performance of GC in DCA-DT/SLH.  相似文献   

12.
The Guard Channel Scheme (GCS) and Handoff Queueing Scheme (HQS) are the popular and practical strategies to prioritize handoff calls in wireless cellular networks. A key issue of giving handoff calls the higher priority is how to achieve a tradeoff among the handoff call blocking probability, new call blocking probability and handoff delay. This paper extends GCS and HQS and presents an efficient handoff scheme that dynamically manages the channels reserved for handoff calls depending on the current status of the handoff queue. A three-dimensional Markov model is developed to analyze the performance of this scheme and investigate the desirable performance tradeoff. The Poisson process and Markov-Modulated-Poisson-Process (MMPP) are used to model the arrival processes of new and handoff calls, respectively. The accuracy of this model is evaluated through the extensive comparison of the analytical results to those obtained from discrete-event simulation experiments. Performance measures in terms of the mean number of calls in the system, aggregate response time, aggregate call blocking probability, handoff call blocking probability, new call blocking probability and handoff delay are evaluated. The analytical model is used to investigate the effects of the number of channels originally reserved for handoff calls, the number of dynamic channels, and the ratio of the rate of handover calls to the aggregate arrival rate on the system performance.  相似文献   

13.
Soft handoff techniques in direct-sequence code-division multiple-access (DS-CDMA) systems provide mobile calls with seamless connections between adjacent cells. Channel reservation schemes are used to give high priority to more important soft handoff attempts over new call attempts. However, since the number of soft handoff attempts varies according to environmental conditions, fixed reservation schemes for handoff attempts can be inefficient. An adaptive channel reservation scheme is herein proposed to control the size of reservation capacity according to varying the number of soft handoff attempts. The proposed scheme also includes a balancing procedure between soft handoff failure and new call blocking to maximize the system capacity. To evaluate the performance of the proposed scheme, a Markovian model is developed that considers the interference-limited capacity effect of DS-CDMA systems. The analytical result shows that the proposed scheme yields a considerable enhancement in terms of new call blocking and soft handoff failure probabilities when compared with the conventional fixed channel reservation scheme  相似文献   

14.
The next-generation wireless networks are evolving toward a versatile IP-based network that can provide various real-time multimedia services to mobile users. Two major challenges in establishing such a wireless mobile Internet are support of fast handoff and provision of quality of service (QoS) over IP-based wireless access networks. In this article, a DiffServ resource allocation architecture is proposed for the evolving wireless mobile Internet. The registration-domain-based scheme supports fast handoff by significantly reducing mobility management signaling. The registration domain is integrated with the DiffServ mechanism and provisions QoS guarantee for each service class by domain-based admission control. Furthermore, an adaptive assured service is presented for the stream class of traffic, where resource allocation is adjusted according to the network condition in order to minimize handoff call dropping and new call blocking probabilities  相似文献   

15.
It is envisaged that next generation wireless networks (NGWN) will be heterogeneous, consisting of multiple radio access technologies (RATs) coexisting in the same geographical area. In these heterogeneous wireless networks, mobile terminals of different capabilities (heterogeneous terminals) will be used by subscribers to access network services. We investigate the effect of using heterogeneous mobile terminals (e.g. single-mode, dual-mode, triple-mode, etc.) on call blocking and call dropping probabilities in cooperative heterogeneous wireless networks. We develop analytical models for heterogeneous mobile terminals and joint radio resource management in heterogeneous wireless networks. Using a two-class three-RAT heterogeneous wireless network as an example, the effect of using heterogeneous terminals in the network is evaluated. Results show the overall call blocking/dropping probability experienced by subscribers in heterogeneous wireless networks depends on the capabilities of mobile terminals used by the subscribers. In the worst case scenario, when all subscribers use single-mode mobile terminals, each subscriber is confined to a single RAT and consequently, joint radio resource management in heterogeneous wireless network has no improvement on new call blocking and handoff call dropping probabilities. However, in the best case scenario, when all subscribers use three-mode terminals, new class-1 call blocking probability decreases from 0.37 (for 100% single-mode terminals) to 0.05, at the arrival rate of 6 calls per minute. New class-2 call blocking probability also decreases from 0.8 to 0.52. Similarly, handoff class-1 call dropping probability decreases from 0.14 to 0.003, and handoff class-2 call dropping probability decreases from 0.44 to 0.09.  相似文献   

16.
In cellular networks, blocking occurs when a base station has no free channel to allocate to a mobile user. One distinguishes between two kinds of blocking, the first is called new call blocking and refers to blocking of new calls, the second is called handoff blocking and refers to blocking of ongoing calls due to the mobility of the users. In this paper, we first provide explicit analytic expressions for the two kinds of blocking probabilities in two asymptotic regimes, i.e., for very slow mobile users and for very fast mobile users, and show the fundamental differences between these blocking probabilities. Next, an approximation is introduced in order to capture the system behavior for moderate mobility. The approximation is based on the idea of isolating a set of cells and having a simplifying assumption regarding the handoff traffic into this set of cells, while keeping the exact behavior of the traffic between cells in the set. It is shown that a group of 3 cells is enough to capture the difference between the blocking probabilities of handoff call attempts and new call attempts. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The third generation of mobile communication aims to transmit not only voice and text but also videos and multimedia data. Furthermore, in the future it is expected to involve web browsing, file transfer, and database access. This requires wireless cellular networks to efficiently support packet data traffic. Therefore, challenge in the design of wireless networks is to support both voice and packet data service of traffic with different QoS-parameters. On the other hand one aspect of this challenge is to develop an efficient scheme for assigning resources to new arriving calls or handoff of different traffic types. Since the blocking probability is one of the most important QoS- parameters, the QoS of wireless cellular networks are often measured in terms of two probabilities, the first is the new call blocking probability that a new call cannot be satisfied because of the unavailability of a proper free channel, and the second is the handoff blocking probability that a proper free channel is not available when a mobile station (MS) wants to move into a neighboring cell. To meet this aspect of the challenge, this proposal proposes a new assignment scheme based on intelligent methodologies to utilize frequency spectrum efficiently and to reduce call blocking probabilities. Jamal Raiyn received the first MS degree (Diplom) in applied mathematics from Siegen University in Germany, in 1998, and the second MS degree in mathematics and computer science from Hannover University in Germany, in 2000. From January 2001 to April 2002, he worked in institute for Data Communications System at the University of Siegen in Germany. Since September 2002 till now, he is a lecturer in computer science department at the Al-Kasemi Academy in Israel, and he is working toward PhD degree at BIU in Tel-Aviv/Israel. In addition a fellow researcher in school for electrical engineering Tel-Aviv University in Israel.  相似文献   

18.
基于排队理论的信道分配算法研究   总被引:1,自引:0,他引:1  
针对蜂窝移动通信系统,基于排队理论提出了一种信道分配方案。该方案将信道分为2部分:语音信道和数据保护信道。预留数据保护信道用于补偿数据丢包率,同时对语音业务设置FIFO排队缓冲器,切换呼叫优先占用缓冲器以确保切换优先。当语音信道空闲时,数据业务可以占用语音信道,一旦有语音呼叫请求到来且无可用语音信道,数据业务应释放占用的语音信道,在数据缓存器中排队等待。仿真结果表明该方案不仅降低了新增呼叫阻塞率和切换掉话率,而且提升了数据业务的性能。  相似文献   

19.
This paper proposes a prioritized call admission control (CAC) model to support soft handoff calls with quality of service (QoS) assurances for both the uplink and downlink connections in a CDMA system. CAC is formulated as a combinatorial optimization problem in which the problem objective is to minimize the handoff forced termination rate. The model, which is based on the adaptive channel reservation (ACR) scheme for prioritized calls, adapts to changes in handoff traffic where the associated parameters (reserved channels, and new and handoff call arrival rates) can be varied. To solve the optimization model, iteration-based Lagrangean relaxation is applied by allocating a time budget. We express our achievements in terms of the problem formulation and performance improvement. Computational experiments demonstrate that the proposed ACR scheme outperforms other approaches when there are fewer rather than more channels, and it reduces the handoff call blocking rate more efficiently when the handoff traffic is heavily loaded. Moreover, the model can be adapted to any kind of reservation service.  相似文献   

20.
The call admission control (CAC) belongs to the category of resource management. Since the radio spectrum is very scarce resource, CAC is one of the most important engineering issues for mobile communications. In this paper, we propose a CAC scheme for direct sequence code-division multiple-access cellular systems supporting mobile multimedia communications services. There are multiple call classes in multimedia services and the required signal-to-interference ratio (SIR) varies with call classes. Call admission decision in the proposed scheme is based on SIR measurement. We take account of the traffic asymmetry between uplink and downlink, which is the most important characteristic of multimedia traffic. In addition, the proposed scheme guarantees the priority of handoff call requests over new call requests. We evaluate the performance of the proposed scheme using Markov analysis. The performance measures which we focus on are the system throughput and the blocking probabilities of handoff calls and new calls. The outage probability of a call in progress is also calculated, which is the probability that the measured bit energy-to-noise density ratio of the call is smaller than the required value for maintaining adequate transmission quality. We present some numerical examples with practically meaningful parameter values and, as a result, show that the proposed CAC scheme can operate well in the mobile multimedia systems such as the International Mobile Telecommunications-2000 (IMT-2000) systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号