首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
利用2.5D SiC纤维预制件,通过前驱体浸渍裂解法(PIP法)制备SiCf/SiC复合材料,通过在第一次浸渍浆料中加入活性Al粉和惰性颗粒SiC粉来提高浸渍效率.研究了活性填料的加入以及纤维表面热解碳层的厚度对材料性能的影响.结果表明,由于Al粉在热解过程中与含碳有机小分子发生化学反应生成新的物相,使得复合材料的力学性能得到了很大的提高,在1200℃经过六个周期的浸渍裂解后,复合材料的三点弯曲强度达到441MPa,比例极限应力达到380MPa.在200~500nm厚度范围内,热解碳的厚度对复合材料的抗弯强度影响不明显.复合材料的弹性模量随着热解碳层厚度的增加而降低.  相似文献   

2.
氧化铝纤维增强氧化铝陶瓷基复合材料具有耐高温、高强度、抗氧化等特点,在航空航天热结构材料方向具有广阔的应用前景。使用NextelTM 610纤维布作为增强体,以浆料浸渍-模压成型工艺制备复合材料粗坯,经马弗炉一次高温烧结获得氧化铝陶瓷基复合材料。通过对纤维和基体的晶体结构、力学强度等性能随热处理温度变化的影响确定适合复合材料制备的温度范围。研究不同固含量浆料对复合材料力学性能和微观结构的影响。结果表明:NextelTM 610/Al2O3陶瓷基复合材料的弯曲强度随着固含量的增大呈先增大后减小的变化趋势,当浆料固含量为60%(质量分数,下同)时,其弯曲强度最大,达到370.68 MPa。当固含量小于60%时,复合材料弯曲强度较低的原因是纤维束内的基体填充不足;当固含量增大至65%时,复合材料弯曲强度衰减原因是过多基体缺陷的产生和纤维-基体界面间结合增强,阻碍了纤维脱粘、拔出等增韧机制。  相似文献   

3.
冻瑞岚  彭志航  向阳  曹峰 《材料工程》1990,(收录汇总):120-129
氧化铝纤维增强氧化铝陶瓷基复合材料具有耐高温、高强度、抗氧化等特点,在航空航天热结构材料方向具有广阔的应用前景。使用Nextel^(TM)610纤维布作为增强体,以浆料浸渍-模压成型工艺制备复合材料粗坯,经马弗炉一次高温烧结获得氧化铝陶瓷基复合材料。通过对纤维和基体的晶体结构、力学强度等性能随热处理温度变化的影响确定适合复合材料制备的温度范围。研究不同固含量浆料对复合材料力学性能和微观结构的影响。结果表明:Nextel^(TM)610/Al 2O 3陶瓷基复合材料的弯曲强度随着固含量的增大呈先增大后减小的变化趋势,当浆料固含量为60%(质量分数,下同)时,其弯曲强度最大,达到370.68 MPa。当固含量小于60%时,复合材料弯曲强度较低的原因是纤维束内的基体填充不足;当固含量增大至65%时,复合材料弯曲强度衰减原因是过多基体缺陷的产生和纤维-基体界面间结合增强,阻碍了纤维脱粘、拔出等增韧机制。  相似文献   

4.
碳纤维表面处理对2D碳/碳复合材料弯曲性能的影响   总被引:1,自引:0,他引:1  
为改善纤维与基体的界面结合状态及提高碳/碳复合材料性能,采用1700℃惰性气体保护、2200℃惰性气体保护、400℃空气氧化三种表面处理方法对碳纤维进行了表面处理.结果表明,经过2200℃处理后的纤维表面比较粗糙,有很多沟槽,制备的碳/碳复合材料中纤维与基体结合紧密,弯曲强度比未经表面处理的纤维制备的碳/碳复合材料弯曲强度提高75%;经过400℃处理后的纤维表面凹坑、凸起较纤维未处理前增多,制备的碳/碳复合材料中纤维与基体结合强度适中,其弯曲强度比未经表面处理的纤维制备的碳/碳复合材料弯曲强度提高43%;而经过1700℃处理的纤维表面比较光滑,纤维与基体结合弱,弯曲强度比未经表面处理的纤维制备的碳/碳复合材料的弯曲强度低.  相似文献   

5.
采用先驱体转化法,以聚碳硅烷/二甲苯、聚碳硅烷/二甲苯/碳化硅粉、聚碳硅烷/交联剂三种浆料体系分别浸渍增强体,裂解制备Cf/SiC复合材料,考察了浸渍浆料体系对Cf/SiC复合材料的结构和性能的影响。研究发现:聚碳硅烷/交联剂浆料制备复合材料所需周期最短,9个周期即可制得密度达1.78g.cm-3、开孔率为4.95%的复合材料;聚碳硅烷/二甲苯/碳化硅粉制备的复合材料密度最大,达1.87g.cm-3,并且制备的复合材料表面平整光洁;聚碳硅烷/二甲苯浆料制备的Cf/SiC复合材料力学性能最好,弯曲强度达455.9MPa,模量达90.6GPa,断裂韧性达18.9MPa.m1/2。研究结果表明,三种常用的浸渍浆料制备的复合材料各有其优点,在各个浸渍周期合理的选用浆料能有效的改善材料结构及性能。  相似文献   

6.
T300碳纤维热处理对Cf/SiC复合材料性能的影响   总被引:1,自引:0,他引:1  
以聚碳硅烷先驱体浸渍裂解工艺制备T300碳纤维增强3D Cf/SiC复合材料,研究了T300碳纤维预先热处理对材料性能的影响.结果表明,热处理能够弱化Cf/SiC复合材料中纤维-基体界面结合,减少碳纤维在复合过程的损伤,显著提高复合材料性能.纤维经热处理后制备的Cf/SiC复合材料弯曲强度和断裂韧性分别从未经处理的154MPa,4.8MPa·m1/2提高到437MPa,20.4 MPa·m1/2.  相似文献   

7.
内部硅化法制备低成本C/SiC复合材料   总被引:1,自引:0,他引:1  
闫联生  李贺军  崔红  王涛 《材料工程》2005,(9):41-44,52
采用内部硅化法制备了低成本C/SiC复合材料,通过三点弯曲法表征了复合材料的强度,采用X射线衍射(XRD)分析了基体组成,通过扫描电镜(SEM)研究了纤维/基体界面和复合材料断裂面的微观结构.结果表明,纤维表面沉积CVD-SiC保护涂层能够有效保护碳纤维不被硅侵蚀,调整硅粉和酚醛树脂配比使C∶Si摩尔比等于10∶ 9,可消除SiC基体中的残余自由硅.研制的低成本2D C/SiC复合材料的弯曲强度和剪切强度分别达到247MPa与13.6MPa.2D C/SiC复合材料的断裂行为呈现韧性破坏模式,在断裂面存在大量的拔出纤维,复合材料的断裂韧性(KIC)达到12.1MPa·m1/2.  相似文献   

8.
SiCf/SiC复合材料的制备与力学性能   总被引:2,自引:0,他引:2  
分别采用先驱体裂解-热压和先驱体浸渍-裂解方法制备出了SiCf/SiC复合材料.重点探讨了不同制备工艺对复合材料纤维/基体间界面和断裂行为的影响.研究表明,采用先驱体裂解-热压工艺制备复合材料时,虽然烧结液相可以促进复合材料的致密化,但其同时导致纤维与基体间的界面结合强以及纤维本身性能的退化,因此复合材料表现为脆性断裂,具有较低的力学性能.而采用先驱体浸渍-裂解法制备复合材料时,由于致密化温度较低,复合材料中纤维与基体的界面结合较弱,而且纤维的性能保留率较高,因此,纤维能够较好地发挥补强增韧作用,复合材料具有较好的力学性能,其抗弯强度和断裂韧性分别为703.6MPa和23.1Pa.m1/2.  相似文献   

9.
制备工艺对Cf/SiC复合材料力学性能的影响   总被引:1,自引:0,他引:1  
分别采用先驱体裂解-热压和先驱体浸渍-裂解方法制备出了Cf/SiC复合材料.重点探讨了不同制备工艺对复合材料纤维/基体间界面和力学性能的影响.研究表明,采用先驱体裂解-热压工艺制备复合材料时,由于制备温度较高,复合材料中纤维与基体间的界面结合强,同时纤维本身性能的退化严重,因此复合材料表现为脆性断裂,具有较低的力学性能.而采用先驱体浸渍-裂解法制备复合材料时,由于致密化温度较低,复合材料中纤维与基体的界面结合较弱,而且纤维的性能保留率较高.因此,纤维能够较好地发挥补强增韧作用,复合材料具有较好的力学性能, 其抗弯强度和断裂韧性分别为573.4MPa和17.2 MPa*m1/2.  相似文献   

10.
以连续SiC纤维为增强体,采用前驱体浸渍裂解工艺,在复合材料基体中引入SiC晶须制备出多级增强的SiCf/SiC-SiCw复合材料,并采用化学气相渗透工艺在SiC晶须表面制备BN界面层,研究了SiC晶须及其表面BN界面层对复合材料的性能影响.结果表明:在复合材料中引入SiC晶须后,由于晶须的拔出、桥连及裂纹偏转等作用增加了裂纹在基体中传递时的能量消耗,使SiCf/SiC复合材料的压缩强度有明显提高,当引入体积分数为20%的SiC晶须时,复合材料压缩强度提高了22.6%,可达673.9 MPa.通过化学气相渗透工艺在SiC晶须表面制备BN界面层后,复合材料的拉伸强度、弯曲强度和断裂韧度分别为414.0,800.3 MPa和22.2 MPa·m1/2,较SiC晶须表面无界面层时分别提高了13.9%,8.8%和19.0%.  相似文献   

11.
Unidirectional CVD SiC (SCS-6) monofilament reinforced BaOAl2O32SiO2(BAS) glass—ceramic matrix composites have been fabricated by a tape lay-up method followed by hot pressing. The glass matrix flows around fibers during hot pressing resulting in nearly fully dense (95–98%) composites. Strong and tough composites having first matrix cracking stress of 250–300 MPa and ultimate flexural strength as high as 900 MPa have been obtained. Composite fracture surfaces showed fiber pullout with no chemical reaction at the fiber/matrix interface. From fiber push out, the fiber/matrix interfacial debond strength and the sliding frictional stress were determined to be 5.9 ± 1.2 MPa and 4.8 ± 0.9 MPa, respectively. The fracture surface of an uncoated SiC (SCS-0)/BAS composite also showed fiber/matrix debonding, fiber pullout, and crack deflection around the fibers implying that the SiC fibers may need no surface coating for reinforcement of the BAS glass-ceramic. Applicability of micromechanical models in predicting the first matrix cracking stress and the ultimate strength of these composites has also been examined.  相似文献   

12.
Three-dimensional (3D) silicon carbide (SiC) matrix composites reinforced with KD-I SiC fibres were fabricated by precursor impregnation and pyrolysis (PIP) process. The fibre-matrix interfaces were tailored by pre-coating the as-received KD-I SiC fibres with PyC layers of different thicknesses or a layer of SiC. Interfacial characteristics and their effects on the composite mechanical properties were evaluated. The results indicate that the composite reinforced with as-received fibre possessed an interfacial shear strength of 72.1 MPa while the composite reinforced with SiC layer coated fibres had a much higher interfacial shear strength of 135.2 MPa. However, both composites showed inferior flexural strength and fracture toughness. With optimised PyC coating thickness, the interface coating led to much improved mechanical properties, i.e. a flexural strength of 420.6 MPa was achieved when the interlayer thickness is 0.1 μm, and a fracture toughness of 23.1 MPa m1/2 was obtained for the interlayer thickness of 0.53 μm. In addition, the composites prepared by the PIP process exhibited superior mechanical properties over the composites prepared by the chemical vapour infiltration and vapour silicon infiltration (CVI-VSI) process.  相似文献   

13.
In this paper, SiO2f/SiO2 composites reinforced by 3D four‐directional braided quartz preform were prepared by the silica sol‐infiltration‐sintering method in a relatively low sintering temperature (450 °C). To characterize the mechanical properties of the composites, mechanical testing was carried out under various loading conditions, including tensile, flexural and shear loading. The microstructure and the fracture behaviour of the 3D four‐directional braided SiO2f/SiO2 composites were studied. The tensile strength, flexural strength and the in‐plane shear strength were 30.8 MPa, 64.0 MPa and 22.0 MPa, respectively. The as‐fabricated composite exhibited highly nonlinear stress–strain behaviour under all the three types of loading. The tensile and flexural fracture mechanisms were fully discussed. The fracture mode of the 3D four‐directional braided SiO2f/SiO2 composite in the Iosipescu shear testing was based on a mixed mechanism because of the multi‐directivity of the composite. Owing to low sintered temperature, the fibre/matrix interfacial strength was weak. The SiO2f/SiO2 composites showed non‐catastrophic behaviour resulting from extensive fibre pull‐out during the failure process.  相似文献   

14.
The creep response of SiC fiber-reinforced Si3N4 composites has been measured using four-point flexural loading at temperatures of 1200–1450°C and stress levels ranging from 250 to 350 MPa. Parameters characterizing the stress and temperature dependence of flexural creep strain rates were determined. A numerical analysis was also performed to estimate the power-law creep parameters for tensile and compressive creep from the bend test data. The incorpoporation of SiC fiber into Si3N4 resulted in substantial improvements in creep resistance even at very high stresses. The steady-state creep deformation mechanism, determined to be subcritical crack growth in the unreinforced matrix, changed to a mechanism in the composites of repeated matrix stress relaxation-fiber rupture-load dispersion by the matrix. Multiple fiber fracture rather than multiple matrix cracking resulted. The tertiary creep in the composite resulted from the rapid growth of the microcracks which initiated from the fiber rupture sites. Fiber strength, matrix cracking stress and interfacial shear strength have been identified as the key microstructural parameters controlling the creep behavior of the composite.  相似文献   

15.
本文研究了以连续碳纤维(Cf)三维整体编织物(3D-B)为增强体,以聚碳硅烷(PCS)裂解转化成碳化硅(SiC)为基体的陶瓷基复合材料(CMC)的制备工艺,探讨了不同工艺方法对复合材料微观和宏观性能的影响,并提出进一步改善制各工艺,提高复合材料性能的途径。研究结果表明,采用聚碳硅烷/二乙烯基苯(PCS/DVB)体系浸渍经交联固化后可以大大缩短裂解时间,致密化效率较聚碳硅烷/二甲苯溶液(PCS/Xylene)体系有着显著提高。对于3D-B Cf/SiC CMC用PCS/DVB体系浸渍经7个浸渍裂解周期后试样密度为1.65g/cm3,弯曲强度达326MPa,断裂韧性KIC为13.72MPa·m1/2;用PCS/Xylene体系浸渍的试样密度为1.54g/cm3,弯曲强度为243MPa,断裂韧性KIC为8.19MPa·m1/2。研究中利用扫描电镜观察了弯曲试样的断口以分析材料破坏时纤维的断裂、拨出形貌。  相似文献   

16.
聚硅氧烷先驱体转化制备低成本Si-O-C陶瓷基复合材料   总被引:7,自引:0,他引:7  
研究了廉价聚硅氧烷的交联与裂解情况 ,并以其为先驱体制备出Si O C陶瓷基复合材料。结果表明 ,在氯铂酸的催化下 ,聚硅氧烷与二乙烯基苯可以交联固化。当聚硅氧烷 二乙烯基苯摩尔比为 1∶0 5时 ,陶瓷产率达 6 0 5 2 %。经 6次浸渍 交联 裂解过程制备出碳纤维三维编织物增强陶瓷基复合材料 ,其密度达到1 5 9g cm3 ,弯曲强度达到 32 1MPa ,断裂韧性达到 9 38MPa·m1 2 。  相似文献   

17.
A processing route for ceramic matrix composites is developed based uponpolymer pyrolysis. Three types of NicalonTM fiber woven fabrics,—i.e., uncoated, carbon-coated, and carbon/SiC-coated—are impregnated with apolysilazane solution. Thus-formed prepregs are then cut, laminated,pressed and fired to 1000 °C in a nitrogen atmosphere. Upon pyrolysis,polysilazane converts to a Si3N4-based ceramic matrix with 60 wt% yield. The composites made with uncoated NicalonTM fibers have poor flexural andtensile strength (103 and 19 MPa, respectively) and show brittle fracturebehavior. That is due not only to the poor fiber-matrix interface but alsoto processing-induced fiber damage. For carbon and carbon/SiC-coatedNicalonTM fiber composites, the coating layers on the fiber surfacemanipulate the appropriate fiber-matrix interface and also protect thefibers from damage during polymer pyrolysis, so these composites exhibithigher flexural (250 and 274 MPa, respectively) and tensile (138 and 196 MPa, respectively) strength. Also, the load stress-deflection behavior ofcomposites with two types of coated fibers cause noncatastrophic fracture.  相似文献   

18.
Unidirectional carbon fibre reinforced SiC composites were prepared from four types of carbon fibres, PAN-based HSCF, pitch-based HMCF, CF50 and CF70, through nine cycles or twelve cycles of impregnation of polycarbosilane and subsequent pyrolysis at 1200°C. The polycarbosilane-derived matrix was found to be -SiC with a crystallite size of 1.95 nm. The mechanical properties of the composites were evaluated by four-point bending tests. The fracture behavior of each composite was investigated based on load-displacement curves and scanning electron microscope (SEM) observation of fracture surfaces of the specimens after tests. It was found that CF50/SiC and CF70/SiC exhibited high strength and non-brittle fracture mode with multiple matrix cracking and extensive fibre pullout, whereas HSCF/SiC and HMCF/SiC exhibited low strength and brittle fracture mode with almost no fibre pullout. The differences in the fracture modes of these carbon fibre/SiC composites were thought to be due to differences in interfacial bonding between carbon fibres and matrix. Values of flexural strengths of CF70/SiC and CF50/SiC were 967 MPa and 624 MPa, respectively, which were approximately 75% and 38% of the predicted values. The relatively lower strength of CF50/SiC, compared with CF70/SiC, was mainly attributed to the shear failure of CF50/SiC during bending tests.  相似文献   

19.
以3,3’-二烯丙基双酚A(BBA)、双酚A双烯丙基醚(BBE)为活性稀释剂、4,4’-二氨基二苯甲烷双马来酰亚胺(MBMI)为反应单体合成聚合物基体(MBAE),以两种热塑性树脂(聚醚砜(PES)和磺化聚醚醚酮(SPEEK))为增韧剂、以溶胶-凝胶法(Sol-Gel)制备的纳米Al2O3为改性剂,制备了Al2O3-PES-SPEEK/MBAE复合材料,并采用FTIR、SEM、冲击强度、弯曲强度、弯曲模量和热失重测试的方法研究复合材料的微观形貌、力学性能和耐热性。结果表明:SPEEK中存在磺酸基团,微观结构更松散,磺化度约为41.3%;Al2O3为纳米级短纤维状晶体,表面含有活性羟基。Al2O3-PES-SPEEK/MBAE复合材料的微观形貌表明:适量的PES、SPEEK和Al2O3在基体树脂中分散均匀,断面形貌呈鱼鳞状,断裂纹不规则且发散,断裂方式为韧性断裂。力学性能测试结果显示,当PES、SPEEK及Al2O3质量分数分别为3 wt%、2 wt%和3 wt%时,Al2O3-PES-SPEEK/MBAE复合材料的弯曲强度、弯曲模量和冲击强度为172.9 MPa、4.7 GPa和21.4 kJ/m2,分别比基体树脂提高了73.1%、74.1%和125.3%,并且Al2O3-PES-SPEEK/MBAE复合材料的热分解温度为453.5℃,比基体树脂提高了15.4℃,Al2O3-PES-SPEEK/MBAE复合材料的力学性能和耐热性有较大提高。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号