首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sintering Kinetics of Porous Ceramics from Natural Diatomite   总被引:7,自引:0,他引:7  
The sintering kinetics of the porous ceramics from natural diatomite is investigated by means of stepwise isothermal dilatometry (SID) accompanied with XRD, scanning electron microscope (SEM), and porosity measurement. We find that the isothermal shrinkage data from SID could be well analyzed to get kinetic parameters according to the empirical rate equation developed by Makipirtti–Meng , where Y is the fractional volume shrinkage during sintering process and n a dimensionless exponent. The apparent activation energy Δ E values obtained for 850°–1000°C and 1050°–1150°C are 911.8 and 610.5 kJ/mol, respectively. Correspondingly, the exponent n values for the two temperature ranges are also much different and can be served to reveal the morphology changing during the sintering process, which is well consistent with the SEM observation.  相似文献   

2.
The isothermal shrinkage behaviors of fine zirconia powders (containing 2.8–2.9 mol% Y2O3) with specific surface areas of about 6 and 16 m2/g were investigated to clarify the effect of specific surface area on the initial sintering stage. The shrinkage of powder compact was measured under constant temperatures in the range of 1000°–1100°C. The increase in specific surface area enhanced the densification rate with increasing temperature. The values of activation energy ( Q ) and frequency-factor term (β0) of diffusion at initial sintering were estimated by applying the sintering-rate equation to the isothermal shrinkage data. The Q of diffusion changes little but the β0 increases with the increase in specific surface area. It is therefore concluded that the increase in the specific surface area of fine zirconia powder enhances the shrinkage rate because of an increase in the β0 at the initial stage of sintering.  相似文献   

3.
The isothermal shrinkage behavior of 2.9 mol% Y2O3-doped ZrO2 powders with 0–1 mass% Al2O3 was investigated to clarify the effect of Al2O3 concentration on the initial sintering stage. The shrinkage of the powder compact was measured at constant temperatures in the range of 950°–1050°C. The Al2O3 addition increased the densification rate with increasing temperature. The values of apparent activation energy ( nQ ) and apparent frequency-factor term (β0 n ), where n is the order depending on the diffusion mechanism, were estimated at the initial sintering stage by applying a sintering-rate equation to the isothermal shrinkage data. The diffusion mechanism changed from grain-boundary diffusion (GBD) to volume diffusion (VD) by Al2O3 addition and both nQ and β0 n increased with increasing Al2O3 concentration. The kinetic analysis of the sintering mechanism suggested that the increase of densification rate by Al2O3 addition largely depends on the increase of β0 n , that is, the increases of n with GBD→VD change and β0 with an increase in Al2O3 content, although the nQ also increases with Al2O3 addition. This enhanced sintering mechanism is reasonably interpreted by the segregated dissolution of Al2O3 at ZrO2 grain boundaries.  相似文献   

4.
Transparent PLZT(7/60/40) ceramics with large piezoelectric coefficients were obtained using a two-step sintering process with controlled oxygen partial pressure. Specifically, low-oxygen-pressure and low-temperature sintering were used in the first step, followed by a high-oxygen-pressure, high-temperature sintering cycle. High-density ceramics with small grain sizes of about 3 µm were prepared. As a result, k p= 0.71, k 33= 0.78, d 33= 850 × 10-12 C/N, and a transparency of 15% (λ= 610 nm, thickness of 1 mm) have been achieved; 20% improvement of d 33 was gained compared to conventional processed PLZT ceramics ( d 33= 710 × 10-12 C/N).  相似文献   

5.
The photoluminescence of Mg-doped BaTiO3:Pr3+ (Pr3+: 0.1 mol%) ceramics was investigated by changing the doping concentration of Mg and the sintering temperature. The results indicated that the intensity of red emission due to the 1 D 23 H 4 transition of Pr3+ exhibited significant dependence on both the Mg doping content and the sintering temperature; the strongest red emission intensity was observed for 2.0 mol% Mg-doped ceramics sintered at 1050°C. An interpretation of the results obtained was made in terms of the changes in the crystal structure and microstructure of the ceramics.  相似文献   

6.
Using intermediate, liquid-forming compositions in the (Y,La)2O3-AlN system as additives, fully dense Si3N4 ceramics with high strength at high temperature have been obtained by pressureless sintering. The ceramics contain rod-shaped β-Si3N4 with M' or K' solid solutions as grain-boundary phases. The strength of these ceramics is 1150 MPa at 1200°C, and the room-temperature toughness is maintained at }7 MPa·m1/2. Phase relations that are pertinent to the new additive compositions are delineated to rationalize their beneficial effects on sinterability and mechanical properties.  相似文献   

7.
A reaction-bonding process, which offers low sintering shrinkage and is a low-cost process, was applied to fabricate Y–α-SiAlON ceramics. The green compacts composed of Si, Y2O3, Al2O3, and AlN were nitrided and subsequently postsintered. Dense single-phase Y–α-SiAlON with elongated grain morphology could be achieved in the specimen postsintered at 1900°C. The material exhibited high hardness (1850 HV10) and high fracture toughness (5.1 MPa·m1/2).  相似文献   

8.
Two lithium-doped sialon ceramics were densified and superplastically deformed by spark plasma sintering (SPS). Rapid densification with linear shrinkage rates of approximately 5 × 10−3 s−1 were observed for samples heated at a rate of 100°C/min up to ∼1400°C under a uniaxial pressure of 40 MPa. Isothermal deformation by SPS-preprepared, fully densified ceramics performed at T ≥ 1450°C yielded strain rates in the order of 10−2 s−2. It is suggested that a high heating rate promotes material transport via formation of a nonequilibrated oxygen-rich liquid of low viscosity. This finding most likely holds true for other liquid-phase sintered ceramics as well and has implications for cost-effective manufacturing of ceramic components.  相似文献   

9.
La2− x R x CuO4 (R: Pr, Y, Nb) polycrystalline ceramics have been prepared by a spark plasma sintering process. Analysis of the microstructure and phase composition shows that pure La2CuO4 ceramics with a high density can be obtained, and no impurity phases appear. All the samples exhibit a metal–semiconductor transition behavior at ∼750 K, which could be ascribed to the decreasing charge density as a result of loss of oxygen atoms and various conduction mechanisms in these La2CuO4-based ceramics. Our results indicate that the La1.98Y0.02CuO4 ceramics show large thermoelectric power ∼1.0 × 10−3μW·(m·K2)−1, and the evaluated ZT can reach 0.17 at 330 K, which potentially make them useful for thermoelectric applications.  相似文献   

10.
Spark plasma sintering (SPS) was used to fabricate bismuth titanate (Bi4Ti3O12) ceramics. The densification, microstructure development and dielectric properties were investigated. It was found that the densification process was greatly enhanced during SPS. The sintering temperature was 200°C lower and the microstructure was much finer than that of the pressureless sintered ceramics, and dense compacts with a high density of over 99% were obtained at a wide temperature range of 800°–1100°C. Dielectric property measurement indicated that the volatilization of Bi3+ was greatly restrained during SPS, resulting in an unprecedented low dielectric loss for pure Bi4Ti3O12 ceramics.  相似文献   

11.
Forsterite (Mg2SiO4) ceramics were prepared using Mg(OH)2 and SiO2 as precursors, and the effect of powder characteristics of Mg(OH)2 on calcination and sintering was investigated. The use of highly dispersed Mg(OH)2 powder (HD powder) resulted in a lower calcination temperature. Forsterite powder of high homogeneity and small particle size prepared from the HD powder enabled synthesis of high-density forsterite ceramics by ordinary sintering without applying external pressure. Moreover, transparent forsterite ceramics were successfully synthesized through addition of excess Mg to the precursors to compensate for Mg evaporated during the sintering process. Subsequent dielectric measurements revealed that the transparent forsterite ceramics had a very low dielectric loss (tan δ<10−4).  相似文献   

12.
The oxidation behavior of NBD 200 Si3N4 containing 1 wt% MgO sintering aid was investigated in oxygen at 900°-1300°C. The oxide growth followed a parabolic rate law with an apparent activation energy of 260 kJ/mol. The oxide layers were enriched with sodium and magnesium because of outward diffusion of intergranular Na+ and Mg2+ cations in the ceramics. The 2-4 orders of magnitude higher oxidation rate for NBD 200 Si3N4 than for other Si3N4 ceramics with a similar amount of MgO could be attributed to the presence of sodium. The oxidation process was most likely rate limited by grain-boundary diffusion of Mg2+.  相似文献   

13.
Europium (Eu) was found to act as a solid-state sintering aid in Y2O3 optical ceramics by controlling ionic diffusivity, which in turn leads to enhanced optical transparency. Transparent ceramic samples of Eu-doped Y2O3, with no additional additives, were sintered by uniaxial vacuum hot pressing under 40 MPa and maximum temperature of 1580°C. Optical attenuation was found to decrease with increasing Eu concentrations between 0 and 5 at% for ceramics processed under the same sintering conditions. In order to study the effect of Eu concentration on ceramic densification, the strain rate and grain size during sintering at constant temperature and varied pressure were measured. A diffusional flow densification model was used to derive instantaneous effective diffusion constants for the densification process. Diffusion constants were found to increase with increasing Eu concentration according to a log–linear relationship. Eu2+ was detected in samples after hot pressing through fluorescence spectroscopy, and the extrinsic defect chemistry was found to be dominated by the reduced Eu in solid solution with Y2O3. A sintering model with diffusion rate limited by yttrium interstitial transport and controlled by the incorporation of Eu2+ onto the cation sublattice was found to be in good agreement with experimental diffusivity data.  相似文献   

14.
The present work indicates through thermodynamic considerations that YLiO2 additive is beneficial for low-temperature sintering of AlN ceramics. Pressureless sintering of commercially available AIN powders with simultaneous additions of YLiO2 and CaO resulted in materials with high thermal conductivity (170 W·m–1·K–1 after sintering at 1600°C for 6 h). It is demonstrated that improvement of thermal conductivity is possible at low firing temperature by use of sintering aids.  相似文献   

15.
Multiferroic Bi0.95 −x La0.05Tb x FeO3 (BLTFO) ceramics were prepared by spark plasma sintering. The protection of CeO2 powders in the spark plasma sintering process can effectively restrain the valence fluctuation of iron ions and high-dense BLTFO ceramics with good dielectric and ferroelectric properties are fabricated. The BLTFO ceramics have low loss (tanδ∼5%) between 102 and 106 Hz. The doping of Tb can increase the dielectric and ferromagnetic properties, but decrease the ferroelectricity of BLTFO ceramics.  相似文献   

16.
Lead-free piezoelectric ceramics have received attention because of increasing interest in environmental protection. Niobate ceramics such as NaNbO3 and KNbO3 have been studied as promising Pb-free piezoelectric ceramics, but their sintering densification is fairly difficult. In the present study, highly dense Na0.5K0.5NbO3 ceramics were prepared using spark plasma sintering (SPS). Although the SPS temperature was as low as 920°C, the density of the Na0.5K0.5NbO3 solid solution ceramics was raised to 4.47 g/cm3 (>99% of the theoretical density). After post-annealing in air, reasonably good ferroelectric and piezoelectric properties were obtained in the Na0.5K0.5NbO3 ceramics with submicron grains. The crystal phase of the Na0.5K0.5NbO3 has an orthorhombic structure. The Curie temperature is 395°C and the piezoelectric parameter ( d 33) of the Na0.5K0.5NbO3 ceramics reached 148 pC/N.  相似文献   

17.
The shrinkage behavior of fine zirconia powders containing 2.9 and 7.8 mol% Y2O3 was investigated to clarify the effect of Y2O3 concentration on the initial sintering stage. The shrinkage of powder compact was measured under both conditions of constant rates of heating (CRH) and constant temperatures. CRH measurements revealed that when the Y2O3 concentration of fine zirconia powder increased, the starting temperature of shrinkage shifted to a high temperature. Isothermal shrinkage measurements revealed that the increase in Y2O3 concentration causes the shrinkage rate to decrease. The values of activation energy ( Q ) and frequency-factor term (β0) of diffusion at initial sintering were estimated by applying the sintering-rate equation to the isothermal shrinkage data. When the Y2O3 concentration increases, both Q and β0 of diffusion increase. It is, therefore, concluded that the increase in Y2O3 concentration of fine zirconia powder decreases the shrinkage rate because of increasing Q of diffusion at the initial stage of sintering.  相似文献   

18.
Dense BaTiO3 ceramics consisting of submicrometer grains were prepared using the spark plasma sintering (SPS) method. Hydrothermally prepared BaTiO3 (0.1 and 0.5 µm) was used as starting powders. The powders were densified to more than similar/congruent95% of the theoretical X-ray density by the SPS process. The average grain size of the SPS pellets was less than similar/congruent1 µm, even by sintering at 1000-1200°C, because of the short sintering period (5 min). Cubic-phase BaTiO3 coexisted with tetragonal BaTiO3 at room temperature in the SPS pellets, even when well-defined tetragonal-phase BaTiO3 powder was sintered at 1100° and 1200°C and annealed at 1000°C, signifying that the SPS process is effective for stabilizing metastable cubic phase. The measured permittivity was similar/congruent7000 at 1 kHz at room temperature for samples sintered at 1100°C and showed almost no dependence on frequency within similar/congruent100-106 Hz; the permittivity at 1 MHz was 95% of that at 1 kHz.  相似文献   

19.
Microstructure characteristics, phase transition, and electrical properties of (Na0.535K0.485)0.926Li0.074(Nb0.942Ta0.058)O3 (NKN-LT) lead-free piezoelectric ceramics prepared by normal sintering are investigated with an emphasis on the influence of sintering temperature. Some abnormal coarse grains of 20–30 μm in diameter are formed in a matrix consisting of about 2 μm fine grains when the sintering temperature was relatively low (980°C). However, only normally grown grains were observed when the sintering temperature was increased to 1020°C. On the other hand, orthorhombic and tetragonal phases coexisted in the ceramics sintered at 980°–1000°C, whereas the tetragonal phase becomes dominant when sintered above 1020°C. For the ceramics sintered at 1000°C, the piezoelectric constant d 33 is enhanced to 276 pC/N, which is a high value for the Li- and Ta-modified (Na,K)NbO3 ceramics system. The other piezoelectric and ferroelectric properties are as follows: planar electromechanical coupling factor k p=46.2%, thickness electromechanical coupling factor k t=36%, mechanical quality factor Q m=18, remnant polarization P r=21.1 μC/cm2, and coercive field E c=1.85 kV/mm.  相似文献   

20.
The effect of additives on the sintering of ThO2 and ThO2-Y2O3 compacts and loose powders was studied by isothermal shrinkage measurements and by scanning electron micrography. Small amounts of the oxides of Ni, Zn, Co, and Cu reduced the sintering temperature. The behavior of NiO at a concentration of 0.8 wt% (2.5 mol%) was studied in detail and found to yield high-density bodies at temperatures below 1500°C. The presence of Y2O3 as a separate phase increases the rate of sintering of ThO2, but smaller amounts of NiO are much more potent. The major portion of the densification occurs very rapidly and is followed by a much slower sintering process typical of volume diffusion. The fast early shrinkage may be caused by the capillary forces of a liquid, but since no evidence of melting was found, a solid-state mechanism may be responsible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号