首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Aluminum-doped zinc oxide thin films (ZnO:Al) were deposited on sodocalcic glass substrates by the chemical spray technique, using zinc acetate and aluminum pentanedionate as precursors. The effect of the [Al/Zn] ratio in the starting solution, as well as the substrate temperature, on the physical characteristic of ZnO:Al thin films was analyzed. We have found that the addition of Al to the starting solution decreases the electrical resistivity of the films until a minimum value, located between 2 and 3 at.%; a further increase in the [Al/Zn] ratio leads to an increase in the resistivity. A similar resistivity tendency with the substrate temperature was encountered, namely, as the substrate temperature is increased, a minimum value of around 475 °C in almost all the cases, was obtained. At higher deposition temperatures the film resistivity suffers an increase. After a vacuum-thermal treatment, performed at 400 °C for 1 h, the films showed a resistivity decrease about one order of magnitude, reaching a minimum value, for the films deposited at 475 °C, of 4.3 × 10− 3 Ω cm.The film morphology is strongly affected by the [Al/Zn] ratio in the starting solution. X-ray analysis shows a (002) preferential growth in all the films. As the substrate temperature increases it is observed a slight increase in the transmittance as well as a shift in the band gap of the ZnO:Al thin films.  相似文献   

2.
A home-made radio frequency magnetron sputtering is used to systematically study the structural, electrical, and optical properties of aluminum doped zinc oxide (ZnO:Al) thin films. The intensity of the (002) peak exhibits a remarkable enhancement with increasing film thickness. Upon optimization, we achieved low resistivity of 4.2 × 10− 4 Ω cm and high transmittance of ~ 88% for ZnO:Al films. Based on the present experimental data, the carrier transport mechanism is discussed. It is found that the grain boundary scattering needs to be considered because the mean free path of free carrier is comparable to the grain size. The 80 nm-ZnO:Al thin films are then deposited onto low-frequency inductively coupled plasma fabricated silicon solar cells to assess the effect of ZnO:Al thin films on the performance of the solar cells. Optimized ZnO:Al thin films are identified as transparent and conductive oxide thin film layers.  相似文献   

3.
《Materials Letters》2003,57(26-27):4187-4190
Structural and optical properties of ZnO films grown on Al substrate and anodic alumina oxide (AAO) templates by rf magnetron reactive sputtering deposition were investigated using X-ray diffraction (XRD), atomic-force microscope (AFM) and photoluminescence (PL). We found that ZnO thin films on Al substrate show good C-axis orientation, while the orientation of ZnO film on AAO templates is disordered, this due to the fact that the crystalline of ZnO is greatly influenced by surface morphology of substrates. PL measurements show a blue band in the wavelength range of 400–500 nm caused by the interstitial Zn in the ZnO films. The intensity of emission peak of ZnO films deposited on AAO templates increases compared with that on the Al substrate. Combining electrical resistivity and carrier concentration measurements, we found that that the blue emission intensity is consistent with the concentration for the interstitial zinc in the ZnO films.  相似文献   

4.
H. Zhu  J. Hüpkes  A. Gerber 《Thin solid films》2010,518(17):4997-5002
Mid-frequency magnetron sputtering of aluminum doped zinc oxide films (ZnO:Al) from tube ceramic targets has been investigated for silicon based thin film solar cell applications. The influence of working pressure on structural, electrical, and optical properties of sputtered ZnO:Al films was studied. ZnO:Al thin films with a minimum resistivity of 3.4 × 104 Ω cm, high mobility of 50 cm²/Vs, and high optical transmission close to 90% in visible spectrum region were achieved. The surface texture of ZnO:Al films after a chemical etching step was investigated. A gradual increase in feature sizes (diameter and depth) was observed with increasing sputter pressure. Silicon based thin film solar cells were prepared using the etched ZnO:Al films as front contacts. Energy conversion efficiencies of up to 10.2% were obtained for amorphous/microcrystalline silicon tandem solar cells.  相似文献   

5.
This study addresses the electrical and optical properties as well as the surface structure after wet-chemical etching of mid-frequency magnetron sputtered aluminium doped zinc oxide (ZnO:Al) films on glass substrates from rotatable ceramic targets. Etching of an as-deposited ZnO:Al film in acid leads to rough surfaces with various feature sizes. The influence of working pressure and substrate temperature on the surface topography after etching was investigated. It was found that the growth model which Kluth et al. applied to films sputtered in radio frequency mode from planar ceramic target can be transferred to film growth from tube target. Furthermore, the influence of Ar gas flow and discharge power on the film properties was investigated. We achieved low resistivity of about 5.4 × 10− 4 Ω·cm at high growth rates of 120 nm·m/min. Finally, surface textured ZnO:Al films were applied as substrates for microcrystalline silicon solar cells and high efficiencies of up to 8.49% were obtained.  相似文献   

6.
Ga-doped zinc oxide (ZnO:Ga) transparent conductive films were deposited on glass substrates by DC reactive magnetron sputtering. The influence of substrate temperature on the structural, electrical, and optical properties of ZnO:Ga films was investigated. The X-ray diffraction (XRD) studies show that higher temperature helps to promote Ga substitution more easily. The film deposited at 350 °C has the optimal crystal quality. The morphology of the films is strongly related to the substrate temperature. The film deposited is dense and flat with a columnar structure in the cross-section morphology. The transmittance of the ZnO:Ga thin films is over 90%. The lowest resistivity of the ZnO:Ga film is 4.48×10−4 Ω cm, for a film which was deposited at the substrate temperature of 300 °C.  相似文献   

7.
Natively textured surface aluminum-doped zinc oxide (ZnO:Al) layers for thin film solar cells were directly deposited without any surface treatments via pulsed direct-current reactive magnetron sputtering on glass substrates. Such an in-situ texturing method for sputtered ZnO:Al thin films has the advantages of efficiently reducing production costs and dramatically saving time in photovoltaic industrial processing. High purity metallic Zn-Al (purity: 99.999%, Al 2.0 wt.%) target and oxygen (purity: 99.999%) were used as source materials. During the reactive sputtering process, the oxygen gas flow rate was controlled using plasma emission monitoring. The performance of the textured surface ZnO:Al transparent conductive oxides (TCOs) thin films can be modified by changing the number of deposition rounds (i.e. thin-film thicknesses). The initially milky ZnO:Al TCO thin films deposited at a substrate temperature of ~ 553 K exhibit rough crater-like surface morphology with high transparencies (T ~ 80-85% in visible range) and excellent electrical properties (ρ ~ 3.4 × 10− 4 Ω cm). Finally, the textured-surface ZnO:Al TCO thin films were preliminarily applied in pin-type silicon thin film solar cells.  相似文献   

8.
Aluminum-doped zinc oxide films (ZnO:Al) were deposited on Si wafers and glass substrates by dc magnetron sputtering from a ZnO target mixed with 2 wt% Al2O3 for photovoltaic films. The effect of base pressure, additional oxygen, and substrate temperature were studied in detail. By dc magnetron sputtering at room temperature, the resistivity and the average transmittance in visible range was 2.3 × 10−3 Ω cm and 77.3%, respectively. And these were improved up to 3.3 × 10−4 Ω cm and 86% at the substrate temperature of 400 °C by high deposition rate and low impurity ambient. The mobility and the carrier concentration were improved by the increased preferred orientation of (002) plane and grain size of film with increasing deposition temperature. This advanced AZO film with good resistivity and transmittance can be expected as the front TCO of thin film solar cells.  相似文献   

9.
To enhance the optical property of zinc oxide (ZnO) thin film, zinc sulfide (ZnS) thin films were formed on the interfaces of ZnO thin film as a passivation and a substrate layer. ZnO and ZnS thin films were deposited by atomic layer deposition (ALD) using diethyl zinc, H2O, and H2S as precursors. Investigations by X-ray diffraction and transmission electron microscopy showed that ZnS/ZnO/ZnS multi-layer thin films with clear boundaries were achieved by ALD and that each film layer had its own polycrystalline phase. The intensity of the photoluminescence of the ZnO thin film was enhanced as the thickness of the ZnO thin film increased and as ZnS passivation was applied onto the ZnO thin film interfaces.  相似文献   

10.
Aluminum doped ZnO thin films (ZnO:Al) deposited on flexible substrates are suitable to be used as transparent conductive oxide (TCO) thin films in solar cells because of the excellent optical and electrical properties. TPT films are a kind of composite materials and are usually used as encapsulation material of solar panels. In this paper, ZnO:Al film was firstly deposited on transparent TPT substrate by RF magnetron sputtering. The structural, optical, and electrical properties of the film were investigated by X-ray diffractometry (XRD), scanning electron microscope (SEM), UV–visible spectrophotometer, as well as Hall Effect Measurement System. Results revealed that the obtained film had a hexagonal structure and a highly preferred orientation with the c-axis perpendicular to the substrate. Also, the film showed a high optical transmittance over 80% in the visible region and a resistivity of about 3.03 × 10? 1 Ω·cm.  相似文献   

11.
We obtained zinc oxide films doped with aluminum using atomic layer deposition (ALD). Their morphology, growth mode, optical and electrical properties are studied. Al content dependence is analyzed. Carrier scattering mechanisms in ZnO:Al (AZO) films are investigated from conductivity versus temperature measurements. We also discuss how the film thickness affects its resistivity and optical transmission. The obtained film resistivities, i.e. 7 × 10?4 ??cm, belong to the lowest reported so far for transparent ZnO:Al films grown by the ALD method.  相似文献   

12.
Mn-doped zinc oxide (ZnO:Mn) thin films with low resistivity and relatively high transparency were firstly prepared on glass substrate by direct current (DC) magnetron sputtering at room temperature. Influence of film thickness on the properties of ZnO:Mn films was investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) show that all the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. As the thickness increases from 144 to 479 nm, the crystallite size increases while the electrical resistivity decreases. However, as the thickness increases from 479 to 783 nm, the crystallite size decreases and the electrical resistivity increases. When film thickness is 479 nm, the deposited films have the lowest resistivity of 2.1 × 10− 4 Ω cm and a relatively high transmittance of above 84% in the visible range.  相似文献   

13.
Novel sublayer surface treatments were investigated to improve the conductivity of aluminum-doped zinc oxide (ZnO:Al) fabricated by using dc magnetron sputtering on a glass substrate. Introducing artificial minute flaws on the surface of glass substrates enhanced the crystallinity of ZnO:Al films and decreased the resistivity accompanying the increase of electron mobility. Combination of the surface treatment and sputter beam control, i.e., interruption of high-energy oxygen with shadow masks, further reduced the resistivity of the film to 3.7 × 10− 4 Ω cm (thickness 70 nm).  相似文献   

14.
谌夏  方亮  吴芳  阮海波  魏文猴  黄秋柳 《材料导报》2012,26(10):33-35,57
采用射频磁控溅射技术在石英衬底上制备了掺杂浓度为0.5%(原子分数)的ZnO∶Sn(TZO)薄膜,研究了不同衬底温度下薄膜的结构、形貌、电学和光学的性能.研究发现,TZO薄膜沿着C轴择优生长,在400℃时结晶度最好,最低电阻率为2.619×10-2Ω·cm,在可见光范围内具有较好的透光率.  相似文献   

15.
In transparent conducting impurity-doped ZnO thin films prepared on glass substrates by a dc magnetron sputtering (dc-MS) deposition, the obtainable lowest resistivity and the spatial resistivity distribution on the substrate surface were improved by a newly developed MS deposition method. The decrease of obtainable lowest resistivity as well as the improvement of spatial resistivity distribution on the substrate surface in Al- or Ga-doped ZnO (AZO or GZO) thin films were successfully achieved by inserting a very thin buffer layer, prepared using the same MS apparatus with the same target, between the thin film and the glass substrate. The deposition of the buffer layer required a more strongly oxidized target surface than possible to attain during a conventional dc-MS deposition. The optimal thickness of the buffer layer was found to be about 10 nm for both GZO and AZO thin films. The resistivity decrease is mainly attributed to an increase of Hall mobility rather than carrier concentration, resulting from an improvement of crystallinity coming from insertion of the buffer layer. Resistivities of 3 × 10− 4 and 4 × 10− 4Ω cm were obtained in 100 nm-thick-GZO and AZO thin films, respectively, incorporating a 10 nm-thick-buffer layer prepared at a substrate temperature around 200 °C.  相似文献   

16.
采用直流磁控溅射法在室温玻璃基片上制备出了掺硅氧化锌(ZnO:Si)透明导电薄膜,研究了溅射功率对ZnO:Si薄膜结构、形貌、光学及电学性能的影响,实验结果表明,溅射功率对ZnO:Si薄膜的生长速率、结晶质量及电学性能有很大影响,而对其光学性能影响不大。实验制备的ZnO:LSi薄膜为六方纤锌矿结构的多晶薄膜,且具有垂直于基片方向的c轴择优取向。当溅射功率从45W增加到105W时,薄膜的晶化程度提高、晶粒尺寸增大,薄膜的电阻率减小;当溅射功率为105W时,薄膜的电阻率达到最小值3.83~104n·cm,其可见光透过率为94.41%。实验制备的ZnO:Si薄膜可以用作薄膜太阳能电池和液晶显示器的透明电极。  相似文献   

17.
In this study, transparent conductive Al doped zinc oxide (ZnO: Al, AZO) thin films with a thickness of 40 nm were prepared on the Corning glass substrate by radio frequency magnetron sputtering. The properties of the AZO thin films are investigated at different substrate temperatures (from 27 to 150 °C) and sputtering power (from 150 to 250 W). The structural, optical and electrical properties of the AZO thin films were investigated. The optical transmittance of about 78 % (at 415 nm)–92.5 % (at 630 nm) in the visible range and the electrical resistivity of 7 × 10?4 Ω-cm (175.2 Ω/sq) were obtained at sputtering power of 250 W and substrate temperature of 70 °C. The observed property of the AZO thin films is suitable for transparent conductive electrode applications.  相似文献   

18.
The epitaxial growth of indium phosphide nanowires (InP NWs) on transparent conductive aluminum-doped zinc oxide (ZnO:Al) thin films is proposed and demonstrated. ZnO:Al thin films were prepared on quartz substrates by radio frequency magnetron sputtering, then InP NWs were grown on them by plasma enhanced metal organic chemical vapor deposition with gold catalyst. Microstructure and optical properties of InP nanowires on ZnO:Al thin films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectric spectroscopy (XPS), photoluminescence and Raman spectroscopy at room temperature. SEM shows that randomly oriented and intersecting InP nanowires were grown to form a network on ZnO:Al thin films. Both wurtzite (WZ) and zincblende (ZB) structures coexist in the random orientation InP NWs on ZnO:Al thin film had been proved by XRD analysis. XPS result indicates Zn diffusion exists in the InP NWs on ZnO:Al. The photoluminescence spectra of InP nanowires with Zn diffusion present an emission at 915 nm. Zn diffusion also bring effect on Raman spectra of InP NWs, leading to more Raman-shift and larger relative intensity ratio of TO/LO.  相似文献   

19.
《Materials Letters》2006,60(13-14):1594-1598
The effect of both the molar concentration of the starting solution and the substrate temperature on the electrical, morphological, structural and optical properties of chemically sprayed fluorine-doped zinc oxide (ZnO:F) thin films deposited on glass substrates is analyzed in this work. All the starting solutions employed were aged for 10 days before the deposition. The results show that as the molar concentration increases, a decrease in the electrical resistivity values is obtained, reaching the minimum resistivity in films ZnO:F deposited from a 0.4 M solution at 500 °C. A further increase in the molar concentration leads to a very slight increase in the resistivity. On the other hand, as the substrate temperature is increased, the resistivity decreases and a tendency towards to minimum value is evidenced; taking the molar concentration as parameter, minimum values are reached at 500 °C. The obtaining of ZnO:F thin films, with a resistivity as low as 7.8 × 10 3 Ω cm (sheet resistance of 130 Ω/□ and film thickness of 600 nm) measured in as-deposited films is reported here for the first time. The concurrent effect of the high molar concentration of the starting solution, the substrate temperature values used, and the ageing of the starting solution, which might cause polymerization of the zinc ions with the fluorine species, enhance the electrical properties. The structure of the films is polycrystalline, with a (002) preferential growth. Molar concentration rules the surface morphology as at low concentration an hexagonal and porous structure is developed changing to a uniform compact and small grain size surface in the films deposited with the high molar concentrations.  相似文献   

20.
Transparent conducting Al and Y codoped zinc oxide (AZOY) thin films with high transparency and low resistivity were deposited by DC magnetron sputtering. The effects of substrate temperature on the structural, electrical and optical properties of AZOY thin films deposited on glass substrates have been investigated. X-ray diffraction spectra indicate that no diffraction peak of Al2O3 or Y2O3 except that of ZnO (0 0 2) is observed. The AZOY thin film prepared at substrate temperature of 250 °C has the optimal crystal quality inferring from FWHM of ZnO (0 0 2) diffraction peak, but the AZOY thin film deposited at 300 °C has the lowest resistivity of 3.6 × 10−4 Ω-cm, the highest mobility of 30.7 cm2 V−1 s−1 and the highest carrier concentration of 5.6 × 1020 cm−3. The films obtained have disorderly polyhedral surface morphology indicating possible application in thin film solar cell with good quality and high haze factor without the need of post-deposition etching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号