首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
冲击载荷作用下煤岩破碎与耗能规律实验研究   总被引:2,自引:0,他引:2  
为了探索煤岩在冲击过程中的破坏特征和能量耗散规律,利用Φ75 mm霍普金森压杆(SHPB)实验装置,对煤岩试件进行不同应变率条件下的冲击压缩实验,分析了冲击加载速率对煤岩破碎耗能和块度分布的影响。实验结果表明:在实验应变率范围内,随着子弹速度的提高,应变率和应力波携带的能量均呈线性增长,而煤岩破碎耗散能则呈指数上升。通过对实验碎块进行块度分维,发现随着应变率的提高,试件的耗散能密度快速增大,煤岩碎块的分形维数就越大,块度越细,破坏的程度越剧烈。分形维数与应变率及耗散能密度之间呈对数增长的关系,即分形维数增大的趋势变缓。  相似文献   

2.
单颗粒煤岩冲击破碎能耗与粒度分布特性试验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
为研究原煤进入流化床锅炉前破碎的能量转化规律,在落锤冲击试验台上对淮北无烟煤和淮北烟煤进行单颗粒冲击破碎试验。分析了破碎能耗与原煤以及破碎产物粒度分布的关系,以及破碎产物的粒度分布特性。研究结果表明:随着破碎程度的加深,两种煤比冲击破碎能耗呈指数增大;煤岩颗粒的易碎性随着煤岩初始粒径的增大呈现先增大后减小的趋势;当破碎产物t10值相同时,存在一个最佳的初始原煤粒径,此时的比冲击能耗最小;同等条件下淮北烟煤较淮北无烟煤更容易破碎成细小颗粒;单颗粒冲击破碎产物的粒度分布符合tn曲线族规律,冲击功增大对破碎产物中等粗细颗粒的含量影响较为显著,对微小颗粒含量的影响不大。  相似文献   

3.
煤截割粒度分布规律的分形特征   总被引:3,自引:0,他引:3       下载免费PDF全文
为寻找煤粒度的分布规律,根据分形理论建立了煤粒度分布的分形表达式,以此为基础,在不同截割条件下进行试验研究,并与威布尔分布作比较,寻找煤破碎特性指数、破碎程度参数、分形维数与影响参数的关系.试验分为3部分:首先,对不同结构参数的截齿、滚筒进行截割试验,根据试验结果对比2种分布函数对煤粒度分布表达的合适性,并对参数间的关系进行探讨;其次,对不同抗压强度(1.43,1.97,2.48 MPa)的模拟煤进行截割试验,寻找2种分布函数与煤抗压强度的关系;最后,通过变化截割运动参数,研究切屑厚度对煤粒度分布的影响及各参数与切屑厚度的关系.研究结果表明:威布尔分布、分形分布均可表示煤粒度的分布规律,但威布尔分布中的煤破碎特性指数、破碎程度参数不能正确反应煤的破碎程度以及与各截割参数间的关系;而分形分布的分形维数可以正确表达煤的破碎程度,并与煤抗压强度、切屑厚度呈线性关系.  相似文献   

4.
《煤矿安全》2021,52(4):1-6
利用DDL600电子万能试验机和自主研发的破碎岩石压实装置,采用分级加载方式对不同相对湿度下的级配破碎煤样进行单轴侧限压缩试验,通过筛分和称重各粒径煤样计算出粒度分形维数,分析各级轴向应力下破碎煤样的粒径分布特征,并根据能量耗散模型计算出破碎能量耗散率,探究加载过程中破碎煤样的能量耗散率规律。结果表明:煤样破碎过程中分形维数与加载应力满足对数关系,初始级配对分形维数变化的影响随加载应力的增大而减小,且相对湿度的增加会降低分形维数;相对湿度通过减少破碎发生而减小了煤样的能量耗散,其能量耗散率的变化区间为30%~42%;煤样的能量耗散率随分形维数呈先增大后减小的趋势,且湿度越大能量耗散率到达峰值时的分形维数越小,能耗率变化越突出。  相似文献   

5.
郑克洪  杜长龙  邱冰静 《煤炭学报》2013,38(6):1089-1094
为寻找煤矸破碎粒度的分布规律,根据分形理论建立了煤矸破碎粒度分布的分形表达式,并与威布尔分布比较,寻找煤矸破碎特性指数、破碎程度参数、分形维数与各影响参数的关系。首先对不同杆数的滚筒进行煤矸破碎试验,根据实验结果选择合适的杆数,并对参数间的关系进行探讨;其次,对不同杆形的滚筒进行煤矸破碎实验,根据实验结果确定杆形对煤矸破碎粒度分布的影响;最后对不同地质条件下的煤矸进行破碎实验,研究不同硬度的煤矸对煤矸破碎粒度分布的影响。研究结果表明:杆数为6、杆形为三角杆的滚筒破碎效果最好。威布尔分布、分形分布均可表示煤矸破碎粒度的分布规律,但用分形分布表示煤矸破碎粒度的分布规律,能更好地表达煤矸破碎粒度的的分布规律,可以更好地指导生产。  相似文献   

6.
不同应变率下煤岩冲击动力试验研究   总被引:15,自引:0,他引:15       下载免费PDF全文
刘晓辉  张茹  刘建锋 《煤炭学报》2012,37(9):1528-1534
利用75 mm的分离式霍普金森压杆(SHPB)实验系统,对煤岩进行不同应变率下冲击压缩试验。实验结果表明:煤岩微细观特征复杂,离散性强;煤岩在低应变率下多呈轴向劈裂破坏,高应变率下呈现出压碎破坏;冲击过程中能量随着应变率的增大而增大,耗散能与应变率基本呈弱幂函数关系或线性分布关系;煤岩破碎块度分维与应变率呈线性相关,分形维数在1.7~2.2范围内,应变率越大,块度越小,分形维数越大,煤岩耗散能量越大。  相似文献   

7.
为研究不同高径比岩石在动态冲击中的能量特性和破碎特征,采用SHPB在冲击速度18.01 m/s条件下对不同高径比花岗岩进行动态压缩试验,结合岩样破坏形态,从破坏过程中的能量角度出发,分析高径比对透射能、反射能及岩样破碎块度的影响。结果表明:高径比为0.5~1的应力-应变曲线出现“双峰”,次峰表现出明显的塑性特征,高径比越小越明显;透射能随高径比增大而减小,反射能随岩样高径比增大而增大;高径比为0.5~0.9的岩样反射能大小基本一致。不同高径比岩样能量耗散率在44.9%~56.1%,能量耗散严重。单位体积岩石破碎耗能随高径比增大而减小,且单位体积岩石破碎耗能大小与分形维数呈正相关,不同高径比花岗岩分形维数在1.94~2.536。在强冲击载荷下花岗岩呈劈裂破坏,岩样破碎块度尺寸随高径比增大而增大。  相似文献   

8.
采用分离式霍普金森压杆(SHPB)试验装置,对0°,22. 5°,45°,67. 5°和90°五种不同层理倾角的层状岩石进行了不同冲击速度下的动态压缩试验,对破碎后的试样碎屑进行筛分,对比分析了层状岩石动态破坏时的块度分布特征;探讨了不同入射能对层状岩石反射能、透射能、耗散能密度和块度分布的影响。结果表明:对同一层理倾角试样,随着冲击速度增大,块度平均粒径逐渐减小,破碎程度逐渐增大;相同冲击速度下层理倾角为67. 5°的试样破碎程度最大,0°试样破碎程度最小。分形维数可以很好的量化表征破碎块度分布特征,破碎块度越小,分形维数越大。相同入射能时,90°试样耗散能密度最大,0°或22. 5°耗散能密度较小,表明高倾角试样能量利用率高,0°或22. 5°的利用率较低。层理倾角为45. 0°,67. 5°和90. 0°的试样在入射能相同时反射能较大,层理倾角为0°,22. 5°的试样透射能较大,表明大倾角下无用功大多以反射波形式耗散,低倾角下无用功大多以透射波形式耗散;反射能、透射能与耗散能密度随入射能增大而增加;分形维数随耗散能密度增大而增大。高倾角时随能耗增大,试样破碎程度越剧烈;低倾角随耗散能密度增大,试样破碎趋势变化较小,产生新裂纹与破裂面所需能量较多。在实际工程中,选择45°~67. 5°倾角的动态加载角度,不仅岩石强度较低,岩石破碎程度高,且能量利用率较高。  相似文献   

9.
为研究不同冲击比能对矿岩粒度分布的影响,根据分形理论建立了粒度分形维数与冲击比能的理论模型。利用落重试验机对无烟煤和矸石进行不同冲击比能下破碎试验,结果表明:冲击比能对无烟煤和矸石破碎粒度分布规律影响较小,G-S分布可以很好的表征不同冲击比能下无烟煤和矸石的累积分布规律;粒度分形维数随着冲击比能的增加呈对数增长。通过试验和其他学者的试验数据验证该理论模型的正确性。  相似文献   

10.
为了对石灰石受冲击破碎后的颗粒粒度分布特征进行分析,采用Bond冲击破碎试验机对不同粒度的单个石灰石颗粒在不同摆锤冲击角度下进行冲击破碎试验。结果表明:Bond冲击破碎后石灰石颗粒粒度符合Weibull分布模型;破碎后颗粒的质量累积概率随冲击能量的增加而提高;破碎后颗粒的质量累积概率密度函数曲线峰值随着给矿粒度的增加而减小;冲击能量增加到一定数值后,冲击能量继续增加,破碎后石灰石各粒径颗粒的质量增加效果随给矿粒径增加而逐渐减弱;给矿粒度一定时,细粒径颗粒的增加幅度随着冲击能的增加而较小,破碎后颗粒的质量累积概率密度函数曲线的峰值随着冲击能的增加而提高;破碎后颗粒的质量累积概率密度函数曲线的宽度随给矿粒径的增加而增大。  相似文献   

11.
在矿山的矿石破碎过程中,存在着能耗巨大的弊端,严重阻碍了企业的绿色发展。利用落锤冲击破碎试验,结合微波加热技术,针对含层理面的矿石试件进行冲击破碎试验,并基于岩石剪切破坏角的Coulomb准则,对未经微波照射与经微波照射下,含不同层理倾角矿石的吸收能及碎屑块度分布情况进行了研究。研究表明,随着层理倾角的增大,矿石吸收能呈先降低后增大的趋势,当倾角为90°时,吸收能存在最小值;经微波加热处理后的矿石吸收能E_(WJL)低于未经微波处理的矿石吸收能E_(JL),且在10°~20°时,E_(JL)-E_(WJL)值最大。随着层理倾角的增大,矿石破碎后的平均块度呈逐渐减小趋势,破碎程度加重;经微波预处理后,矿石的平均块度显著降低,破碎程度最高;因冲击破碎后的碎屑尺寸影响,矿石的平均块度与分形维数相关性较弱。研究成果对于矿石破碎中的能耗控制具有一定参考价值。  相似文献   

12.
煤和矸石的冲击破碎粒度分布特性   总被引:1,自引:0,他引:1       下载免费PDF全文
利用冲击式破碎装置,以不同的冲击速度对3个煤矿的煤矸进行冲击破碎试验,对试验结果进行数据拟合,得出煤矸的分布特征函数,以及冲击速度和煤矸硬度对其分布特性的影响。结果表明:煤和矸石的冲击破碎粒度符合Weibull分布,随着冲击速度的增加,煤的破碎特性指数增大,而矸石的破碎特性指数却减小,煤和矸石的破碎程度参数均减小;煤的概率密度分布曲线受冲击速度和煤矸硬度的影响较大,其峰值随着冲击速度的增加显著增大;煤的硬度越低,其峰值增加越显著,粒度分布越窄,且向小粒径方向偏移;矸石的密度分布曲线受冲击速度和矸石硬度的影响较小;利用煤矸粒度概率密度曲线可以判定不同冲击速度和硬度条件下的煤矸分离效果。  相似文献   

13.
闫佳钊  甘德清  高锋  田晓曦  张静辉 《中国矿业》2021,30(1):204-208,213
矿石完全断裂是实现有效机械破碎的前提,为研究磁铁矿石完全断裂强度的尺寸效应,本文开展了落锤冲击加载实验,分析了立方体试件承受的冲击力时程曲线特征、不同尺寸试件的冲击强度与冲击速率的关系和完全断裂强度与尺寸的理论关系.研究表明:立方体试件冲击力的变化经历了冲击力快速上升阶段、稳定加载阶段、冲击力下降阶段和回升与震荡阶段,...  相似文献   

14.
为研究冲击荷载作用下岩石能量吸收与破碎分形特征,应用霍普金森试验系统对0.6、0.8、1.0、1.2、1.4长径比花岗岩进行动态冲击试验,分析了应变率效应和尺寸效应对花岗岩试件的破碎能耗和破坏形态的影响;在考虑时间因素的基础上,提出一种新的能时密度指标来评价能量耗散,结合分形维数计算与能时密度分析,研究岩石在冲击过程中的能时密度与分形特征。结果表明:0.6 ~ 1.4长径比花岗岩试件的应变率和能时密度均符合乘幂关系,同种长径比试件的能时密度随应变率增大呈递增趋势;在48.8 ~124.2 s-1应变率区间内,分形维数随应变率增加显著增大;花岗岩试件在动荷载下的能时密度和分形维数符合乘幂关系,单位时间内岩石吸收能量越多,分形特征就越明显;引用能时密度结合岩石破碎块度的分形维数计算,能够定量研究岩石单位时间内的能量吸收规律。  相似文献   

15.

为研究石灰岩在多次冲击荷载作用下的安全性,采用直径为50 mm的分离式霍普金森压杆装置对石灰岩试件开展不同应变率及不同冲击次数下的单轴冲击压缩试验,并结合超声波检测装置测量多次冲击荷载作用下岩体纵波波速,分析岩体纵波波速、损伤因子、峰值应力及能量耗散变化规律。结果表明:石灰岩试件纵波波速随冲击次数的增加而降低,波速降幅不断增大,损伤因子随之增大;0.25 MPa冲击气压作用下试件破碎需要6次,0.35、0.40 MPa冲击气压作用下试件破碎需要4次,冲击气压的增大使岩体产生破坏所用冲击次数减少;0.40 MPa冲击气压第2、3、4次冲击作用下试件峰值应力降幅分别为6.23%、14.00%、25.92%,冲击作用使试件峰值应力降低,且后期冲击作用下试件应力降幅增大;冲击荷载作用下岩体能量时程曲线分为3个阶段,岩体破碎耗能密度与冲击次数之间呈现良好的二次线性正相关关系,0.40 MPa冲击气压第2、3、4次冲击作用下岩体耗能密度是第1次的1.06、1.38、1.78倍,后期冲击作用对岩体的破坏作用更加显著。

  相似文献   

16.
为验证破碎方式对磨矿速度和Bond球磨功指数的影响,使用某磁铁矿选矿厂的鄂式破碎产品、圆锥破碎产品和高压辊磨产品,分别进行磨矿动力学试验和Bond球磨功指数试验。结果表明:①高压辊磨产品的可磨性最好,圆锥破碎产品次之,鄂式破碎产品最差。同一破碎产品的磨矿速度随着磨矿时间的增加而降低。不同破碎产品,随着磨矿时间增加,颗粒性质逐步均匀并接近,磨矿速度逐步接近,破碎方式对磨矿速度的影响逐步降低。②Bond球磨功指数试验表明,在磨矿产品粒度大于0.10 mm时,破碎方式对磨矿的能耗影响显著,高压辊磨产品最节能;当磨矿产品粒度小于0.10 mm时,破碎方式对磨矿的能耗影响降低。破碎工艺中增加高压辊磨机,对于增大磨机处理量、降低磨矿能耗十分有益。  相似文献   

17.
以方铅矿和方解石组成的岩石颗粒为研究对象,采用离散单元法研究了在微波照射下矿物颗粒内部裂纹扩展演化过程及其分布特征,并分析了照射时间、功率密度、能耗、矿物尺寸等的影响。结果表明,矿物裂纹主要表现为拉伸裂纹,根据分布特征及所在位置可以将其分为三类:在方解石内的扩散型裂纹、在方解石和方铅矿交界处的环形裂纹和方铅矿内裂纹,前两者的形成是微波能辅助碎矿磨矿的根本原因。其中方解石内的扩散型裂纹和交界面处的环形裂纹的形成是微波辅助碎矿和磨矿的根本原因。矿物裂纹数目随微波照射时间及能量消耗增长的曲线可以分为两类:功率密度低的为三阶段增长形式,功率密度高的为两阶段增长形式。矿物形成裂纹数目相同的情况下,随着功率密度提高,能耗降低,但高于一定值后,能耗变化不大。微波辅助方法和其他碎矿磨矿的方式类似,矿物越小越难破碎。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号