首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
基于K-均值聚类和凝聚聚类的离群点查找方法   总被引:2,自引:1,他引:1       下载免费PDF全文
离群点发现是数据挖掘研究的一个重要方面。根据数据流的特点,给出了一种基于K-均值聚类和凝聚聚类的离群点发现方法,先用K-均值聚类对数据流进行处理,生成中间聚类结果,然后用凝聚聚类对这些中间结果进行再次选择,最后找出可能存在的离群点。  相似文献   

2.
针对基于距离的离群点检测算法受全局阈值的限制, 只能检测全局离群点, 提出了基于聚类划分的两阶段离群点检测算法挖掘局部离群点。首先基于凝聚层次聚类迭代出K-means所需的k值, 然后再利用K-means的方法将数据集划分成若干个微聚类; 其次为了提高挖掘效率, 提出基于信息熵的聚类过滤机制, 判定微聚类中是否包含离群点; 最后从包含离群点的微聚类中利用基于距离的方法挖掘出相应的局部离群点。实验结果表明, 该算法效率高、检测精度高、时间复杂度低。  相似文献   

3.
目前,大部分离群点检测算法需要人工输入参数,不能同时检测出全局和局部离群点,不能有效处理密度不均匀数据。针对这些问题,提出一种基于密度划分的离群点检测算法DD-DBSCAN。主要创新包括:1)运用最小生成树的方法,新定义簇密度概念,将数据录入后划分成密度不等的簇,使算法能够处理密度分布不均匀的数据;2)采用"分而治之"的思想,对经过划分的数据集分别进行离群点检测,使得算法能够同时处理全局和局部离群点;3)通过在各个簇中自适应地计算所需参数值,算法不再需要人工输入参数(聚类半径(Eps)等)。通过在2D模拟数据集和Iris真实数据集上的实验表明,与DBSCAN算法比较,本文算法具有更高的覆盖率和正确率。  相似文献   

4.
离群点是与其他正常点属性不同的一类对象,其检测技术在各行业上均有维护数据纯度、保障业内安全等重要应用,现有算法大多是基于距离、密度等传统方法判断检测离群点.本算法给每个对象分配一个"孤立度",即该点相对其邻点的孤立程度,通过排序进行判定,比传统算法效率更高.在AP(affinity propagation)聚类算法的基础上进行改进与优化,提出能检测异常数据点的算法APO(outlier detection algorithm based on affinity propagation).通过加入孤立度模块并计算处理样本点的孤立信息,并引入放大因子,使其与正常点之间的差异更明显,通过增大算法对离群点的敏感性,提高算法的准确性.分别在模拟数据集和真实数据集上进行对比实验,结果表明:该算法与AP算法相比,对离群点的敏感性更加强烈,且本算法检测离群点的同时也能聚类,是其他检测算法所不具备的.  相似文献   

5.
为解决从飞机快速存取记录器(QAR)数据中发现异常数据并预测飞机潜在故障的问题,考虑QAR数据量大、飞行参数数据值相对较为稳定的特点,提出一种适用于QAR数据的离群点检测算法。第一阶段采用K均值聚类对QAR数据流分区进行聚类生成均值参考点;第二阶段采用最小二乘法对生成的均值参考点进行拟合,通过计算均值参考点到拟合飞机参数曲线的距离来判断并找出可能的离群点。实验结果表明,该算法可以准确发现飞机中的故障数据,有效解决部分飞机故障的离群点检测问题。  相似文献   

6.
针对智能电网大数据背景下传统密度聚类离群点检测方法在适应性和异常点样本获取成本上的不足,研究一种新的基于权值的密度聚类离群点检测算法,并用极限学习机来预测离群点判断的阈值.对海量历史报文数据进行数据预处理后,将其放入极限学习机进行训练,并预测得到基于权值的局部离群因子(weight-based local outlie...  相似文献   

7.
融合Shadowed Sets聚类的离群点检测算法   总被引:1,自引:0,他引:1  
从数据整体和宏观特点给出了离群点的新的定义,并基于数据宏观模式定义了一种新的离群因子,该因子考虑了数据点偏离数据模式的程度和数据点本身归类的不确定性;提出了一种新的Shadowed Sets优化目标,使得在模糊集阴影化过程中更加关注核的准确性;同时基于Shadowed Sets聚类,提出了一种结合聚类的离群点检测算法,该算法可以同时进行聚类和离群点检测;通过模拟数据和Iris数据测试,显示算法具有较好的检测效果。  相似文献   

8.
基于密度的局部离群点检测算法   总被引:1,自引:0,他引:1  
基于统计学和基于距离的离群点检测都依赖与给定数据点集的全局分布,然而数据通常并非都是均匀分布的。当分析分布密度相差很大的数据时,基于密度的局部离群点检测方法有着很好的识别局部离群点的能力。但存在时间复杂度较大,文章提出了一种改进的算法,能降低时间复杂度,实现有效的局部离群点的检测。  相似文献   

9.
在LDOF算法的基础上,提出一种基于多重聚类的离群点检测算法PMLDOF。该算法针对局部离群度量计算量大的缺点,采用聚类剪枝技术作为减少计算量的方法;同时,为了避免将位于簇边缘的离群点错剪,算法利用多重聚类的差异性对簇的边缘点进行筛选。在对数据集进行剪枝后,计算剩余数据的局部离群度LDOF,并找出符合条件的离群数据点。实验结果表明,算法在时间复杂度和检测精度上具有更好的优越性。  相似文献   

10.
NLOF:一种新的基于密度的局部离群点检测算法   总被引:1,自引:0,他引:1  
基于密度的局部离群点检测算法(LOF)的时间复杂度较高且不适用于大规模数据集和高维数据集的离群点检测。通过对LOF算法的分析,提出了一种新的局部离群点检测算法NLOF,该算法的主要思想如下:在数据对象邻域查询过程中,尽可能地利用已知信息优化邻近对象的邻域查询操作,有关邻域的计算查找都采用这种思想。首先通过聚类算法DBSCAN对数据集进行预处理,得到初步的异常数据集。然后利用LOF算法中计算局部异常因子的方法计算初步异常数据集中对象的局部异常程度。在计算数据对象的局部异常因子的过程中,引入去一划分信息熵增量,用去一划分信息熵差确定属性的权重,対属性的权值做具体的量化,在计算各对象之间的距离时采用加权距离。 在真实数据集上 对NLOF算法进行了充分的验证。结果显示,该算法能够提高离群点检测的精度,降低时间复杂度,实现有效的局部离群点的检测。  相似文献   

11.
基于层次聚类的孤立点检测方法   总被引:3,自引:1,他引:2       下载免费PDF全文
孤立点检测是数据挖掘过程的重要环节,提出了基于层次聚类的孤立点检测(ODHC)方法。ODHC方法基于层次聚类结果进行分析,对距离矩阵按簇间距离从大到小检测孤立点,可检测出指定离群程度的孤立点,直到达到用户对数据的集中性要求。该方法适用于多维数据集,且算法原理直观,用户友好,对孤立点的检测准确率较高。在iris、balloon等数据集上的仿真实验结果表明,ODHC方法能有效地识别孤立点,是一种简单实用的孤立点检测方法。  相似文献   

12.
传统K-均值算法对初始聚类中心敏感大,易陷入局部最优值.将遗传算法与K均值算法结合起来进行探讨并提出一种改进的基于K-均值聚类算法的遗传算法,改进后的算法是基于可变长度的聚类中心的实际数目来实现的.同时分别设计出新的交叉算子和变异算子,并且使用的聚类有效性指标DB-Index作为目标函数,该算法很好地解决了聚类中心优化问题,与之前的两种算法相比,改进后的算法改善了聚类的质量,提高了全局的收敛速度.  相似文献   

13.
王娟 《微型机与应用》2011,30(20):71-73,76
传统K-means算法对初始聚类中心的选取和样本的输入顺序非常敏感,容易陷入局部最优。针对上述问题,提出了一种基于遗传算法的K-means聚类算法GKA,将K-means算法的局部寻优能力与遗传算法的全局寻优能力相结合,通过多次选择、交叉、变异的遗传操作,最终得到最优的聚类数和初始质心集,克服了传统K-means算法的局部性和对初始聚类中心的敏感性。  相似文献   

14.
一个好的K-means聚类算法至少要满足两个要求:(1)能反映聚类的有效性,即所分类别数要与实际问题相符;(2)具有处理噪声数据的能力。传统的K-means算法是一种局部搜索算法,存在着对初始化敏感和容易陷入局部极值的缺点。针对此缺点,提出了一种优化初始中心的K-means算法,该算法选择相距最远的处于高密度区域的k个数据对象作为初始聚类中心。实验表明该算法不仅具有对初始数据的弱依赖性,而且具有收敛快,聚类质量高的特点。为体现聚类的有效性,获得更高精度的聚类结果,提出了将优化的K-means算法(PKM)和遗传算法相结合的混合算法(PGKM),该算法在提高紧凑度(类内距)和分离度(类间距)的同时自动搜索最佳聚类数k,对k个初始中心优化后再聚类,不断地循环迭代,得到满足终止条件的最优聚类。实验证明该算法具有更好的聚类质量和综合性能。  相似文献   

15.
现有的孤立点检测算法在通用性、有效性、用户友好性及处理高维大数据集的性能还不完善,为此提出一种快速有效的基于层次聚类的全局孤立点检测方法。该方法基于层次聚类的结果,根据聚类树和距离矩阵可视化判断数据孤立程度,并确定孤立点数目。从聚类树自顶向下,无监督地去除孤立点。仿真实验验证了方法能快速有效识别全局孤立点,具有用户友好性,适用于不同形状的数据集,可用于大型高维数据集的孤立点检测。  相似文献   

16.
基于量子遗传聚类的入侵检测方法*   总被引:1,自引:0,他引:1  
现有基于聚类的入侵检测算法,聚类过程中需要预设聚类数,且算法的性能受初始数据输入顺序的影响,为此提出了一种新的基于量子遗传聚类入侵检测方法。该方法的基本思想是先自动建立初始聚类簇,再用改进量子遗传算法对初始聚类组合优化,最后进行入侵检测。实验结果表明,该方法能够有效地检测出网络中的入侵数据。  相似文献   

17.
基于无监督聚类混合遗传算法的入侵检测方法   总被引:3,自引:0,他引:3  
在利用聚类进行入侵检测的方法中,有效地进行聚类是关键。为了对未标识数据进行聚类,提出了一种新的无监督入侵检测方法。该方法克服了聚类算法中对数据输入顺序敏感和需要预设聚类数目的缺点,减少了所需参数个数。通过初始聚类簇的建立和混合遗传算法对初始聚类进行优化组合两阶段的方法来实现聚类,克服了初始聚类对结果的影响,提高了聚类质量,并进行检测入侵。实验结果表明该方法有较好的检测率和误检率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号