首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 624 毫秒
1.
Selection of pre-mRNA splice sites is a highly accurate process involving many trans-acting factors. Recently, we described a role for U6 snRNA position G52 in selection of the first intron nucleotide (+1G). Because some U2 alleles suppress U6-G52 mutations, we investigated whether the corresponding U2 snRNA region also influenced 5' splice site selection. Our results demonstrate that U2 snRNAs mutated at position U23, but not adjacent nucleotides, specifically affect 5' splice site cleavage. Furthermore, all U2 position U23 mutations are synthetic lethal with the thermosensitive U6-G52U allele. Interestingly, the U2-U23C substitution has an unprecedented hyperaccurate splicing phenotype in which cleavage of introns with a +1G substitution is reduced, whereas the strain grows with wild-type kinetics. U2 position U23 forms the first base pair with U6 position A59 in U2/U6 helix Ib. Restoration of the helical structure suppresses 5' splice site cleavage defects, showing an important role for the helix Ib structure in 5' splice site selection. U2/U6 helix Ib and helix II have recently been described as being functionally redundant. This report demonstrates a unique role for helix Ib in 5' splice site selection that is not shared with helix II.  相似文献   

2.
U2 small nuclear RNA (snRNA) contains a sequence (GUAGUA) that pairs with the intron branchpoint during splicing. This sequence is contained within a longer invariant sequence of unknown secondary structure and function that extends between U2 and I and stem IIa. A part of this region has been proposed to pair with U6 in a structure called helix III. We made mutations to test the function of these nucleotides in yeast U2 snRNA. Most single base changes cause no obvious growth defects; however, several single and double mutations are lethal or conditional lethal and cause a block before the first step of splicing. We used U6 compensatory mutations to assess the contribution of helix III and found that if it forms, helix III is dispensable for splicing in Saccharomyces cerevisiae. On the other hand, mutations in known protein components of the splicing apparatus suppress or enhance the phenotypes of mutations within the invariant sequence that connect the branchpoint recognition sequence to stem IIa. Lethal mutations in the region are suppressed by Cus1-54p, a mutant yeast splicing factor homologous to a mammalian SF3b subunit. Synthetic lethal interactions show that this region collaborates with the DEAD-box protein Prp5p and the yeast SF3a subunits Prp9p, Prp11p, and Prp21p. Together, the data show that the highly conserved RNA element downstream of the branchpoint recognition sequence of U2 snRNA in yeast cells functions primarily with the proteins that make up SF3 rather than with U6 snRNA.  相似文献   

3.
4.
5.
Efficient splicing of the 5'-most intron of pre-mRNA requires a 5' m7G(5')ppp(5')N cap, which has been implicated in U1 snRNP binding to 5' splice sites. We demonstrate that the cap alters the kinetic profile of U1 snRNP binding, but its major effect is on U6 snRNA binding. With two alternative wild-type splice sites in an adenovirus pre-mRNA, the cap selectively alters U1 snRNA binding at the site to which cap-independent U1 snRNP binding is stronger and that is used predominantly in splicing; with two consensus sites, the cap acts on both, even though one is substantially preferred for splicing. However, the most striking quantitative effect of the 5' cap is neither on U1 snRNP binding nor on the assembly of large complexes but on the replacement of U1 snRNP by U6 snRNA at the 5' splice site. Inhibition of splicing by a cap analogue is correlated with the loss of U6 interactions at the 5' splice site and not with any loss of U1 snRNP binding.  相似文献   

6.
This is the first study in which the complex of a monoclonal autoantibody fragment and its target, stem loop II of U1 snRNA, was investigated with enzymatic and chemical probing. A phage display antibody library derived from bone marrow cells of an SLE patient was used for selection of scFvs specific for stem loop II. The scFv specificity was tested by RNA immunoprecipitation and nitrocellulose filter binding competition experiments. Immunofluorescence data and immunoprecipitation of U1 snRNPs containing U1A protein, pointed to an scFv binding site different from the U1A binding site. The scFv binding site on stem loop II was determined by footprinting experiments using RNase A, RNase V1, and hydroxyl radicals. The results show that the binding site covers three sequence elements on the RNA, one on the 5' strand of the stem and two on the 3' strand. Hypersensitivity of three loop nucleotides suggests a conformational change of the RNA upon antibody binding. A three-dimensional representation of stem loop II reveals a juxtapositioning of the three protected regions on one side of the helix, spanning approximately one helical turn. The location of the scFv binding site on stem loop II is in full agreement with the finding that both the U1A protein and the scFv are able to bind stem loop II simultaneously. As a consequence, this recombinant monoclonal anti-U1 snRNA scFv might be very useful in studies on U1 snRNPs and its involvement in cellular processes like splicing.  相似文献   

7.
Retroviruses require both spliced and unspliced RNA for replication. Accumulation of unspliced Rous sarcoma virus RNA is facilitated in part by a negative cis element in the gag region, termed the negative regulator of splicing (NRS), which serves to repress splicing of viral RNA but can also block splicing of heterologous introns. The NRS binds components of the splicing machinery including SR proteins, U1 and U2, small nuclear ribonucleoproteins (snRNPs) of the major splicing pathway, and U11 snRNP of the minor pathway, yet splicing does not normally occur from the NRS. A mutation that abolishes U11 binding (RG11) also abrogates NRS splicing inhibition, indicating that U11 is functionally important for NRS activity and suggesting that the NRS is recognized as a minor-class 5' splice site (5' ss). We show here, using specific NRS mutations to disrupt U11 binding and coexpression of U11 snRNA genes harboring compensatory mutations, that the NRS U11 site is functional when paired with a minor-class 3' ss from the human P120 gene. Surprisingly, the expectation that the same NRS mutants would be defective for splicing inhibition proved false; splicing inhibition was as good as, if not better than, that for the wild-type NRS. Comparison of these new mutations with RG11 indicated that the latter may disrupt binding of a factor(s) other than U11. Our data suggest that this factor is U1 snRNP and that a U1 binding site that overlaps the U11 site is also disrupted by RG11. Analysis of mutations which selectively disrupted U1 or U11 binding indicated that splicing inhibition by the NRS correlates most strongly with U1 snRNP. Additionally, we show that U1 binding is facilitated by SR proteins that bind to the 5' half of the NRS, confirming an earlier proposal that this region is involved in recruiting snRNPs to the NRS. These data indicate a functional role for U1 in NRS-mediated splicing inhibition.  相似文献   

8.
Two highly conserved regions of the 586-nucleotide yeast (Saccharomyces cerevisiae) U1 small nuclear RNA (snRNA) can be mutated or deleted with little or no effect on growth rate: the universally conserved loop II (corresponding to the metazoan A loop) and the yeast core region (X. Liao, L. Kretzner, B. Séraphin, and M. Rosbash, Genes Dev. 4:1766-1774, 1990). To examine the contribution of these regions to U1 small nuclear ribonucleoprotein particle (snRNP) activity, a competitor U1 gene, encoding a nonfunctional U1 snRNA molecule, was introduced into a number of strains carrying a U1 snRNA gene with loop II or yeast core mutations. The presence of the nonfunctional U1 gene lowered the growth rate of these mutant strains but not wild-type strains, consistent with the notion that mutant U1 RNAs are less active than wild-type U1 snRNAs. A detailed analysis of the U1 snRNA levels and half-lives in a number of merodiploid strains suggests that these mutant U1 snRNAs interact with U1 snRNP proteins less well than do their wild-type counterparts. Competition for protein factors during snRNP assembly could account for a number of previous observations in both yeast and mammalian cells.  相似文献   

9.
Nuclear pre-mRNA splicing necessitates specific recognition of the pre-mRNA splice sites. It is known that 5' splice site selection requires base pairing of U6 snRNA with intron positions 4-6. However, no factor recognizing the highly conserved 5' splice site GU has yet been identified. We have tested if the known U6 snRNA-pre-mRNA interaction could be extended to include the first intron nucleotides and the conserved 50GAG52 sequence of U6 snRNA. We observe that some combinations of 5' splice site and U6 snRNA mutations produce a specific synthetic block to the first splicing step. In addition, the U6-G52U allele can switch between two competing 5' splice sites harboring different nucleotides following the cleavage site. These results indicate that U6 snRNA position 52 interacts with the first nucleotide of the intron before 5' splice site cleavage. Some combinations of U6 snRNA and pre-mRNA mutations also blocked the second splicing step, suggesting a role for the corresponding nucleotides in a proofreading step before exon ligation. From studies in diverse organisms, various functions have been ascribed to the conserved U6 snRNA 47ACAGAG52 sequence. Our results suggest that these discrepancies might reflect variations between different experimental systems and point to an important conserved role of this sequence in the splicing reaction.  相似文献   

10.
Nuclear pre-mRNA splicing occurs in a large RNA-protein complex containing four small nuclear ribonucleoprotein particles (snRNPs) and additional protein factors. The yeast Prp4 (yPrp4) protein is a specific component of the U4/U6 and U4/U6-U5 snRNPs, which associates transiently with the spliceosome before the first step of splicing. In this work, we used the in vivo yeast two-hybrid system and in vitro immunoprecipitation assays to show that yPrp4 interacts with yPrp3, another U4/U6 snRNP protein. To investigate the domain of yPrp4 that directly contacts yPrp3, we introduced deletions in the N-terminal half of yPrp4 and point mutations in the C-terminal half of the molecule, and we tested the resulting prp4 mutants for cell viability and for their ability to interact with yPrp3. We could not define any particular sequence in the first 161 amino acid residues that are specifically required for protein-protein interactions. However, deletion of a small basic-rich region of 30 amino acid residues is lethal to the cells. Analysis of the C terminus prp4 mutants obtained clearly shows that this region of yPrp4 represents the primary domain of interaction with yPrp3. Interestingly, yPrp4 shows significant similarity in its C-terminal half to the beta-subunits of G proteins. We have generated a three-dimensional computer model of this domain, consisting of a seven-bladed beta-propeller based on the crystalline structure of beta-transducin. Several lines of evidence suggested that yPrp4 is contacting yPrp3 through a large flat surface formed by the long variable loops linking the beta-strands of the propeller. This surface could be used as a scaffold for generating an RNA-protein complex.  相似文献   

11.
The yeast Prp9p, Prp11p, Prp21p proteins form a multimolecular complex identified as the SF3a splicing factor in higher eukaryotes. This factor is required for the assembly of the prespliceosome. Prp21p interacts with both Prp9p and Prp11p, but the molecular basis of these interactions is unknown. Prp21p, its human homologue, and the so-called SWAP proteins share a tandemly repeated motif, the surp module. Given the evolutionary conservation and the role of SWAP proteins as splicing regulators, it has been proposed that surp motifs are essential for interactions between Prp21p and other splicing factors. In order to characterize functional domains of Prp21p and to identify potential additional functions of this protein, we isolated a series of heat-sensitive prp21 mutants. Our results indicate that prp21 heat-sensitive mutations are associated with defects in the interaction with Prp9p, but not with Prp11p. Interestingly, most heat-sensitive point mutants associate a strong splicing defect with a pre-mRNA nuclear export phenotype, as does the prp9-1 heat-sensitive mutant. Deletion analyses led to the definition of domains required for viability. These domains are responsible for the interaction with Prp9p and Prp11p and are conserved through evolution. They do not include the most conserved surp1 module, suggesting that the conservation of this motif in two families of proteins may reflect a still unknown function dispensable in yeast under standard conditions.  相似文献   

12.
13.
Base pairing between U2 snRNA and the branchpoint sequence (BPS) is essential for pre-mRNA splicing. Because the metazoan BPS is short and highly degenerate, this interaction alone is insufficient for specific binding of U2 snRNP. The splicing factor U2AF binds to the pyrimidine tract at the 3' splice site in the earliest spliceosomal complex, E, and is essential for U2 snRNP binding in the spliceosomal complex A. We show that the U2 snRNP protein SAP 155 UV cross-links to pre-mRNA on both sides of the BPS in the A complex. SAP 155's downstream cross-linking site is immediately adjacent to the U2AF binding site, and the two proteins interact directly in protein-protein interaction assays. Using UV cross-linking, together with functional analyses of pre-mRNAs containing duplicated BPSs, we show a direct correlation between BPS selection and UV cross-linking of SAP 155 on both sides of the BPS. Together, our data are consistent with a model in which U2AF binds to the pyrimidine tract in the E complex and then interacts with SAP 155 to recruit U2 snRNP to the BPS.  相似文献   

14.
In mammalian cells, base pairing between the U2 and U6 small nuclear RNAs is required during pre-RNA splicing. We show by psoralen crosslinking of HeLa nuclear extract that U2.U6 base pairing occurs within abundant ribonucleoprotein complexes that sediment at > 150 S in glycerol gradients. All of the spliceosomal RNAs (U1, U2, U4, U5, and U6) cosediment with these large complexes, suggesting that they may be related to small nuclear RNA-containing structures called speckles/coiled bodies or snurposomes, which have been visualized in mammalian or amphibian nuclei, respectively. In contrast to nuclear extract, S100 extract, which is splicing-defective and lacks the > 150S complexes, does not contain base-paired U2.U6. However, U2.U6 base pairs form in S100 extract that has been made splicing-competent by supplementation with Ser/Arg-rich (SR) proteins, ATP, and an adenovirus splicing substrate. During splicing in supplemented S100 extract, U2.U6 base pairing precedes the appearance of splicing intermediates and occurs initially in an approximately 60S spliceosome complex but also in progressively larger (100-300 S) complexes. Possible functional relationships between the 60S spliceosome and the > 150S complexes are discussed.  相似文献   

15.
A minor class of metazoan introns has well-conserved splice sites with 5'-AU-AC-3' boundaries, compared to the 5'-GU-AG-3' boundaries and degenerate splice sites of conventional introns. Splicing of the AT-AC intron 2 of a sodium channel (SCN4A) precursor messenger RNA in vitro did not require inhibition of conventional splicing and required adenosine triphosphate, magnesium, and U12 small nuclear RNA (snRNA). When exon 3 was followed by the 5' splice site from the downstream conventional intron, splicing of intron 2 was greatly stimulated. This effect was U1 snRNA-dependent, unlike the basal AT-AC splicing reaction. Therefore, U1-mediated exon definition interactions can coordinate the activities of major and minor spliceosomes.  相似文献   

16.
The elaborate and energy-intensive spliceosome assembly pathway belies the seemingly simple chemistry of pre-mRNA splicing. Prp38p was previously identified as a protein required in vivo and in vitro for the first pre-mRNA cleavage reaction catalyzed by the spliceosome. Here we show that Prp38p is a unique component of the U4/U6.U5 tri-small nuclear ribonucleoprotein (snRNP) particle and is necessary for an essential step late in spliceosome maturation. Without Prp38p activity spliceosomes form, but arrest in a catalytically impaired state. Functional spliceosomes shed U4 snRNA before 5' splice-site cleavage. In contrast, Prp38p-defective spliceosomes retain U4 snRNA bound to its U6 snRNA base-pairing partner. Prp38p is the first tri-snRNP-specific protein shown to be dispensable for assembly, but required for conformational changes which lead to catalytic activation of the spliceosome.  相似文献   

17.
Psoralen cross-linking experiments in HeLa cell nuclear extracts have revealed the binding of U1 snRNA to substrates containing the SV40 late and adenovirus L3 polyadenylation signals. The sites of U1 cross-linking to the substrates map different distances upstream of the AAUAAA sequence to regions with limited complementarity to the 5' end of U1 snRNA. U1 cross-linking to the same site in the SV40 late pre-mRNA is enhanced by the addition of an upstream 3' splice site, which also enhances polyadenylation. Examination of different nuclear extracts reveals a correlation between U1 cross-linking and the coupling of splicing and polyadenylation, suggesting that the U1 snRNP participates in the coordination of these two RNA-processing events. Mutational analyses demonstrate that U1/substrate association cannot be too strong for coupling to occur and suggest that the U1 snRNP plays a similar role in recognition of internal and 3' terminal exons. Possible mechanisms for communication between the splicing and polyadenylation machineries are discussed, as well as how interaction of the U1 snRNP with 3' terminal exons might contribute to mRNA export.  相似文献   

18.
19.
Core snRNP proteins bind snRNA through the conserved Sm site, PuA(U)n>/=3GPu. While yeast U1 snRNA has three matches to the Sm consensus, the U1 3'-terminal Sm site was found to be both necessary and sufficient for U1 function. Mutation of this site inhibited pre-mRNA splicing, blocked cell division and resulted in the accumulation of two 3'-extended forms of the U1 snRNA. Cells which harbor the Sm site mutation lack mature U1 RNA (U1alpha) but have a minor polyadenylated species, U1gamma, and a prominent, non-polyadenylated species, U1beta. Metabolic depletion of the essential Sm core protein, Smd1p, also resulted in the increased accumulation of U1beta and U1gamma. In vitro, synthetic U1 precursors were cleaved by Rnt1p (RNase III) very near the U1beta 3'-end observed in vivo. We propose that U1beta is an Rnt1p-cleaved intermediate and that U1 maturation to the U1alpha form occurs through an Sm-sensitive step. Interestingly, both U1alpha and a second, much longer RNA, U1straightepsilon, were produced in an rnt1 mutant strain. These results suggest that yeast U1 snRNA processing may progress through Rnt1p-dependent and Rnt1p-independent pathways, both of which require a fun-ctional Sm site for final snRNA maturation.  相似文献   

20.
In the gene of the neural cell adhesion molecule, the 5' splice site of the alternate exon 18 plays an important role in establishing regulated splicing profiles. To understand how the 5' splice site of exon 18 contributes to splicing regulation, we have investigated the interaction of the U2AF65 splicing factor to pre-mRNAs that contained portions of the constitutive exon 17 or the alternate exon 18 fused to exon 19 and separated by a shortened intron. Despite sharing an identical 3' splice site, only the pre-mRNA that contained a portion of exon 17 and its associated 5' splice site displayed efficient U2AF65 cross-linking. Strikingly, a G-->U mutation at position +6 of the intron, converting the 5' splice site of exon 18 into that of exon 17, stimulated U2AF65 crosslinking. The improved cross-linking efficiency of U2AF65 to a pre-mRNA carrying the 5' splice site of exon 17 required the integrity of the 5' end of U1 but not of U2 small nuclear RNA. Our results indicate that neural cell adhesion molecule 5' splice site sequences influence U2AF65 binding through a U1 small nuclear ribonucleoprotein/U2AF interaction that occurs at the commitment stage of spliceosome assembly, before stable binding of the U2 small nuclear ribonucleoprotein. Thus, the 5' splice sites of exons 17 and 18 differentially affect U2AF65 binding to the 3' splice site of exon 19. Factors that modulate U1 small nuclear ribonucleoprotein binding to these 5' splice sites may play a critical role in regulating exon 18 skipping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号