首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The surface morphology of normal and regenerated nerve roots was studied using correlated scanning and transmission electron microscopic methods. Nerve roots of the cauda equina were either cut and rejoined or crossed from a segment above to a segment below. Good regeneration was observed in both experimental procedures. The regenerated nerve root sheath had alterations in surface structure created by extensive growth of collagen. Despite this collagen formation, regenerated axons crossed the anastomotic site with relative ease. Surface features of the regenerated axons were similar in appearance to those of the normal axon. Schwann cells were easily recognized, as were the collagen fibers of the endoneurium, although the endoneurium was more prominent and occupied more of the interaxonal space. Macrophages were identified as round structures with a laminated surface or as a honeycomb structure. Internal features of the regenerating axons were more difficult to identify, but mitochondria and a fibrous network were observed. These studies have demonstrated the application of scanning electron microscopic methods to visualize surface structures and cells in regenerated nerve roots.  相似文献   

3.
This investigation describes the differentiation of the type I pneumocyte from undifferentiated pulmonary epithelium. Cells lining subpleural alveolar septa were photographed from serial sections with the electron microscope and a three dimensional representation of each cell was obtained by transferring the contours of the cell membranes from micrographs to transparent plastic sheets which were then spaced to scale and stacked. The results of this study indicate that: (1) the only reliable criterion for differentiating between type I and type II cells is the commencement of attenuation of the type I cell; (2) differentiation of the type I cell occurs via the formation of one or more cytoplasmic attenuations that eventually fuse peripherally, thereby surrounding the unattenuated cell soma; (3) with respect to individual cells, blood-air barriers tend to form in distal areas of the attenuating cytoplasm before proximal areas; (4) both type I and type II pneumocytes retain certain characteristics that reveal their common origin.  相似文献   

4.
Sural nerve biopsies of four patients, aged 54--76 years, with a predominantly sensory type of neuropathy following high dosages of thalidomide were examined by light and electron microscopy. The present study includes a qualitative and quantitative evaluation of unmyelinated nerve fibers. Despite severe neuropathy, increased numbers of small unmyelinated axons per endoneurial area were noted in all patients. This numerical increase appeared to be independent of aging, since it was not seen in two senile controls, studied at the age of 83 and 88 years. The increase in the endoneurial density of unmyelinated axons, especially of small sized fibers, is likely to be related to regeneration following degeneration of unmyelinated axons although endoneurial shrinkage secondary to loss of large myelinated fibers could have caused an additional increase in the number of axons per endoneurial area. Axonal sprouting, despite degeneration of large numbers of myelinated and unmyelinated fibers, appears to be consistent with some of the characteristic clinical features of thalidomide neuropathy such as paresthesias, hyperesthesia for pain and temperature, and disturbances of autonomic functions. On the other hand, a variable number of empty Schwann cells (bands of Büngner) and pockets at the surface of many Schwann cells noted in the four patients with neuropathy were also seen in both senile controls with no signs of neuropathy. Thus, it is obvious that pockets and empty Schwann cells may be related to aging or other causes of slow axonal wasting with Schwann cell proliferation and are not necessarily associated with clinically manifest neuropathy.  相似文献   

5.
6.
This study attempts clarify the mechanism of neurological deficits in tethered cord syndrome using evoked spinal cord potentials (ESCPs). ESCPs in response to both sciatic nerve (SN-ESCP) and spinal cord stimulation (SC-DESCP) were recorded from the dorsal epidural space. With a fixed degree of caudal traction on the spinal cord in ten cats for 2-4 hours, ESCPs were increased in amplitude in the N1 and N2 deflections of the SC-DESCPs to 158% and 154% at L5 and decreased to 91% and 76% after transient augmentation at L3. On the other hand, the amplitude in the N1 deflection of the SN-ESCPs at L3 and L5 was decreased to 40% and 68%. These findings suggest that not only the force but also the duration of traction influence the degree of the spinal cord dysfunction. When the spinal cords of 17 cats received compression with traction and without traction, the SN-ESCPs of the former became positive earlier than that of the latter. The extent of the recovery in amplitude of both SC-DESCPs and SN-ESCPs propagated over compression site was far limited in the former than in the latter. These results would indicate that the spinal cord subjected to traction is vulnerable to compression.  相似文献   

7.
To elucidate the role of aspartate as a signal molecule in the brain, its localization and those of related amino acids were examined by light and electron microscopic quantitative immunocytochemistry using antibodies specifically recognizing the aldehyde-fixed amino acids. Rat hippocampal slices were incubated at physiological and depolarizing [K+] before glutaraldehyde fixation. At normal [K+], aspartate-like and glutamate-like immunoreactivities were colocalized in nerve terminals forming asymmetrical synapses on spines in stratum radiatum of CA1 and the inner molecular layer of fascia dentata (i.e., excitatory afferents from CA3 and hilus, respectively). During K+ depolarization there was a loss of aspartate and glutamate from these terminals. Simultaneously the immunoreactivities strongly increased in glial cells. These changes were Ca2+-dependent and tetanus toxin-sensitive and did not comprise taurine-like immunoreactivity. Adding glutamine at CSF concentration prevented the loss of aspartate and glutamate and revealed an enhancement of aspartate in the terminals at moderate depolarization. In hippocampi from animals perfused with glutaraldehyde during insulin-induced hypoglycemia (to combine a strong aspartate signal with good ultrastructure) aspartate was colocalized with glutamate in excitatory terminals in stratum radiatum of CA1. The synaptic vesicle-to-cytoplasmic matrix ratios of immunogold particle density were similar for aspartate and glutamate, significantly higher than those observed for glutamine or taurine. Similar results were obtained in normoglycemic animals, although the nerve terminal contents of aspartate were lower. The results indicate that aspartate can be concentrated in synaptic vesicles and subject to sustained exocytotic release from the same nerve endings that contain and release glutamate.  相似文献   

8.
Confocal microscopy was used to detect GABA-immunoreactive axo-axonic appositions, indicating possible synaptic contacts, on Ib fiber terminals in the lumbosacral spinal cord. A Ib fiber from posterior biceps-semitendinosus muscles was labeled by intra-axonal ejection of tetramethylrhodamine dextran (red), and serial sections of S1-L7 spinal cord segments were processed for GABA immunocytochemistry revealed by fluorescein isothiocynate (green). Appositions between GABA-immunoreactive structures and the labeled fiber appeared as yellow spots because of the presence of both fluorochromes in small volumes (0.3 * 0.3 * 0.5 micrometer(3)) of tissue. These spots were identified as probable axo-axonic contacts when: (1) they were observed in two to four serial confocal planes, indicating that they did not occur by chance; and (2) their sizes, shapes, and locations were similar to those of axo-axonic contacts found on Ia terminals, known to bear presynaptic boutons, and resembled the axo-axonic synapses described in electron microscope studies of Ib boutons in Clarke's column. A total of 59 presumed axo-axonic contacts was observed on two Ib collaterals, representing an estimated 20% of the total complement. In a three-dimensional reconstruction of one collateral, they were mostly located in terminal positions, and some branches bore more contacts than others. Such differential distribution could not result from chance appositions between GABAergic structures and Ib arborization and further supported the identification of axo-axonic contacts. Segmental Ib collaterals bear axo-axonic synapses that might ensure differential funneling of information toward different targets.  相似文献   

9.
Descending projections from the spinal (Vsp) and the mesencephalic nuclei (Vme) of the trigeminal nerve to the spinal cord were studied by means of the retrograde horseradish peroxidase technique in the cat. The number of labeled neurons was largest in the case of high cervical injections and decreased as the injections were placed caudally. Small laminae III and IV neurons of the nucleus caudalis (Vc) were labeled ipsilaterally following injections placed as caudally as the middle cervical segments (C4-C5). Lamina I (marginal) neurons of the Vc were labeled ipsilaterally after injections at the middle thoracic level (T6) but those of C1 were labeled after lumbar injections (L3). Lamina V neurons of C1 and the medullary counterparts were labeled bilaterally after injections placed caudally to thoracic segments. A few small neurons were labeled in the ipsilateral nucleus interpolaris (Vi) after injections placed as caudally as the middle cervical segments (C6). Among the subdivisions of the Vsp, the labeled neurons were most numerous in the nucleus oralis (Vo). They were medium-sized and large, and appeared bilaterally, with an ipsilateral predominance at the level of the superior olive. The great majority projected to the cervical segments but a few also projected to the lower cervical to the thoracic segments (C8-T9). Neurons of the Vme projected ipsilaterally to the upper cervical segments (C1-C3). No projections were found from the principal sensory nucleus. The present study suggests that the trigeminospinal projections of the Vsp and the Vme are composed of various cells of origin and thereby subserve not only the trigeminospinal reflex but other unknown functions.  相似文献   

10.
To characterize glutamate/aspartate uptake activity in various cellular and subcellular elements in the striatum, rat striatal slices were exposed to 10 and 50 mu M exogenous (D)-aspartate. After fixation with glutaraldehyde/formaldehyde the distribution of (D)-aspartate was analysed by postembedding immunocytochemistry and the ultrastructural distribution was compared with the distributions of endogenous glutamate and GABA. Light microscopically, (D)-aspartate-like immunoreactivity was localized in conspicuous dots along very weakly labelled dendritic profiles and neuron cell bodies. At the electron microscope level gold particles signalling (D)-aspartate occurred at highest density in nerve terminals making asymmetrical contacts with postsynaptic spines (i.e. resembling synapses of cortical afferents). Astrocytic processes also contained gold particles, but at a lower density than nerve endings. In contrast, dendritic spines were only weakly (D)-aspartate-positive. The difference in labelling at 10 and 50 mu M (D)-aspartate was consistent with 'high-affinity' uptake. Neighbouring sections processed with other antibodies showed that the D-aspartate labelling. Occurred in nerve terminals strongly immunoreactive for glutamate, rather than in terminals very weakly glutamate-immunopositive or in nerve endings immunoreactive for GABA. Glutamate labelling of perfusion-fixed striatum confirmed that terminals forming asymmetrical synaptic contacts with spines were enriched with gold particles, suggesting that these terminals use glutamate as a transmitter. This study demonstrates that high-affinity uptake sites for excitatory amino acids in the striatum are most strongly expressed on presumed glutamatergic nerve terminals and on astrocytes.  相似文献   

11.
12.
Forty-eight spinal cord injury victims were implanted with an epidural spinal cord stimulation system to treat spasms that had not satisfactorily responded to medical therapy. All the patients were at least 6 months after the injury. The protocol included assessment by independent examiners preoperatively and at 3, 6, 12 and 24 months after the implant. Pre- and postoperative data collection included the frequency and severity of the spasms. Combining the frequency and intensity scores into a 'severity' score provided a more accurate clinical picture. No patient observed neurological deterioration following the surgical procedure or the neurostimulation treatment. A statistically significant reduction in the severity of the spasms was observed in the follow-up evaluations, with results that progressively increased in time. It is appears that spinal cord stimulation is an effective and safe alternative in the management of spasms in spinal cord injury victims. Its exact role in relation to intrathecal baclofen infusion and ablative procedures remains to be defined.  相似文献   

13.
A 15-year-old girl with hypertension, markedly elevated plasma renin activity, and normal aortogram had a well encapsulated tumor nodule removed from the right kidney. Following surgery, the plasma renin activity and blood pressure became normal and have remained so for the past 12 months. The tumor consisted of juxtaglomerular cells filling the interstitium between endothelium-lined vascular spaces. Electron microscopy disclosed the presence in the interior of the tumor, of unmyelinated nerve bundles with varicosities containing the small, densely cored vesicles characteristic of adrenergic nerves. Nerve terminals were in contact with the juxtaglomerular tumor cells. No basement membrane material was interposed between the nerve endings and the tumor cell; the width of the gap between the two plasma membranes was approximately 150 A. The presence of sympathetic fibers in the juxtaglomerular cell tumor underscores the close biologic relationship between the sympathetic and renin systems.  相似文献   

14.
The effect of whole cigarette smoke on the vocal cord mucosa of the rabbit has been studied with the electron microscope. The epithelium shows variable degrees of hyperplasia, with enlargement of the basal cells. Variable degrees of damage are found in the nerves and muscles in the tunica propria. The relationship between these changes, some endogenous factors in the larynx and the development of cancer are discussed. A possible toxic effect of cigarette smoke on the nerves and muscles of the larynx is mentioned.  相似文献   

15.
Almost all catecholamine (CA)-containing nerve terminals in the ventral column, intermediate grey and ventral half of the dorsal column disappeared after bilateral stereotaxic lesions of nucleus locus coeruleus, as revealed by fluorescence histochemistry. Some of the CA nerve terminals in the dorsal half of the column seemed to be unaffected by the lesions, as well as the CA terminals innervating the thoracic sympathetic lateral column and the band of nerve terminals crossing the midline and innervating the central grey. This coeruleo-spinal pathway in the rat is located in the anterior funiculus and the ventral parts of the lateral funiculus. A schematic map of the different CA projections to the spinal cord is presented. It was concluded that locus coeruleus innervates almost all parts of the central nervous system.  相似文献   

16.
I Koyanagi  CH Tator  PJ Lea 《Canadian Metallurgical Quarterly》1993,33(2):277-83; discussion 283-4
Vascular corrosion casts of polyester resin in the normal spinal cord at C4-C6 and C7-T1 were inspected three-dimensionally by scanning electron microscopy in 13 rats. Arteries and veins were easily differentiated by the impression pattern of endothelial nuclei on the casts. The centrifugal arterial system from the sulcal arteries supplied most of the gray and white matter in the ventral and lateral spinal cord. Each sulcal artery supplied only one side of the cord. The average number of sulcal arteries was 2.6 per mm. The centripetal arterial system from the posterior spinal arteries fed the posterior gray and white matter. In contrast with classical concepts, there was no pial arterial plexus on the ventral and ventrolateral surface except for infrequent transverse branches from the anterior spinal artery. In the posterior columns, two types of large veins were identified: the posterior medial septal veins and the posterior oblique veins that drained the posterior columns, medial posterior gray matter, and posterior gray commissure. The remainder of the gray and white matter was drained by the sulcal veins and the radial veins. This method clearly demonstrates the three-dimensional structure of both the arterial and venous system in the rat spinal cord.  相似文献   

17.
Experimental structural dextroconvex scoliosis was produced in rabbits by costotransversolisis with transversectomy and releasing of paravertebral muscles between TVII and TX on the right side. Two compensatory curves developed on the upper dorsal and lumbar levels. Biopsies of paravertebral muscles in experimental animals included, besides areas of normal tissue, a considerable derangement of the cell contractile apparatus with sarcoplasmic dilation and eventual cell disintegration and necrosis. Histological changes varied along levels, the convexity being more affected. The severity of changes and reduction in body weight and length were correlated with the degree of scoliosis. A selective atrophy of slow-twitch fibers was observed in experimental animals, especially at the level of the main curve, whereas fast-twitch fiber atrophy was more important caudally. Control animal biopsies always appeared normal. Our experimental model shows an overt participation of paravertebral muscles in the establishment of compensatory processes following scoliosis, although the role that paravertebral muscles play in the etiopathogenesis of human idiopathic scoliosis requires further investigation.  相似文献   

18.
A quantitative analysis of substance P (SP)-immunoreactive (IR) terminals contacting physiologically characterized dorsal horn neurons was performed. Three types of neuron were studied: nociceptive specific (NS) from lamina I (n = 3), wide dynamic range (WDR) from laminae II-IV (n = 3), and nonnociceptive (NN) from lamina IV (n = 3). The nociceptive response of focus was a slow, prolonged depolarization to noxious stimuli, because this response was previously shown to be blocked by selective neurokinin-1 (NK-1) receptor antagonists. Ultrastructural immunocytochemistry was used to quantify the relative number of SP-IR boutons apposed to the intracellularly labeled cell per unit of length (density). Densities of the total population (SP immunoreactive+nonimmunoreactive) of apposed boutons were similar in all three regions (cell body, proximal and distal dendrites) for the three functional types of neuron. NS neurons received a significantly higher density of appositions from SP-IR boutons than NN cells in all three regions. However, compared to WDR cells, NS cells possessed a significantly higher density of appositions from SP-IR boutons only in the cell body and proximal dendrites. WDR cells had a higher density of appositions from SP-IR boutons than NN cells, but only in the proximal and distal dendrites. On average, 33.5% of the SP-IR boutons apposed to the cells displayed a synaptic contact. Finally, 30-45% of the SP-IR boutons apposed to the cells colocalized calcitonin gene-related protein (CGRP) immunoreactivity, indicating their primary sensory origin. The data indicate a direct correlation between the amount of SP-IR input and the nociceptive nature of the cells and suggest that SP acts on NK-1 receptors at a short distance from its release site.  相似文献   

19.
Stimulant-induced exocytosis has been demonstrated in sympathetic ganglia of the rat by in vitro incubation of excised ganglia in the presence of tannic acid, which stabilizes vesicle cores after their exocytotic release. Sites of exocytosis were observed along non-synaptic regions of the surfaces of neuron somata and dendrites, including regions of dendrosomatic and dendrodendritic apposition, as well as along the surfaces of nerve terminals About half the exocytoses associated with nerve terminals were parasynaptic or synaptic, and these appeared mostly to arise from the presynaptic terminal, but occasionally from the postsynaptic element. The results demonstrated that the neurons of sympathetic ganglia release materials intraganglionically in response to stimulation, that release from different parts of the neuron is subject to independent regulation, at least via cholinergic receptors, and that release is partly diffuse, potentially mediating autocrine or paracrine effects, and partly targeted toward other neurons, but that the latter mode is not necessarily, and not evidently, synaptic. Specifically, exocytosis from all locations increased significantly during incubation in modified Krebs' solution containing 56 nm potassium. Observation of the effects of cholinergic agonists (nicotine, carbachol, oxotremorine) and antagonists (atropine, AF-DX 116) showed that nicotinic and muscarinic excitation each, independently, increased the incidence of exocytosis from somata and dendrites. Exocytosis from nerve endings was not altered by nicotine, but was enhanced or, at high initial rates of exocytosis, decreased, by muscarinic stimulation. Evidence was obtained for muscarinic auto-inhibition of exocytosis from nerve terminals, occurring under basal incubation conditions, and for a muscarinic excitatory component of somatic exocytosis, elicitable by endogenous acetylcholine. The M2-selective muscarinic antagonist AF-DX 116 was found to modify the exocytotic response of the dendrites to oxotremorine, widening the range of its variation; this effect is consistent with recent evidence for the presence of M2-like muscarinic binding sites, in addition to M1-like binding, upon these dendrites [Ramcharan E. J. and Matthews M. R. (1996) Neuroscience 71, 797-832]. Over all conditions, disproportionately more sites of somatic and dendritic exocytosis were found to be located in regions of dendrosomatic and dendrodendritic apposition than would be expected from the relative extent of the neuronal surface occupied by these relationships. Such mechanisms of intraganglionic release may be expected to contribute to the regulation and integration of the behaviour of the various functionally distinctive populations of neurons in these ganglia, by autocrine, paracrine, and focal, neuroneuronal, routes of action. Similar phenomena of exocytotic soma-dendritic release might prove to subserve integrative neuroneuronal interactions more widely throughout the nervous system.  相似文献   

20.
The neurochemical anatomy and synaptic interactions of morphologically identified chemoreceptor or baroreceptor afferents in the nucleus of the solitary tract (NTS) are poorly understood. A substantial body of physiological and light microscopic evidence suggests that substance P (SP) may be a neurotransmitter contained in first order sensory chemo- or baroreceptor afferents, however ultrastructural support of this hypothesis is lacking. In the present report we have traced the central projections of the carotid sinus nerve (CSN) in the cat by utilizing the transganglionic transport of horseradish peroxidase. Medullary tissues including the commissural NTS (cNTS) were processed for the histochemical visualization of transganglionically labeled CSN afferents and for the immunocytochemical detection of SP by dual labeling light and electron microscopic methods. At the light microscopic level, dense bilateral labeling with TMB was found in the tractus solitarius (TS) and cNTS, caudal to the obex. Rostral to the obex, significant ipsilateral TMB labeling was detected in the dorsal, dorso-lateral, and medial subnuclei of the NTS, as well as in the TS. Significant staining of SP immunoreactive processes was detected in most subnuclei of the NTS. The cNTS was examined by electron microscopy. Either HRP or SP were readily identified in single labeled unmyelinated axons, myelinated axons, and nerve terminals in the cNTS. SP immunoreactivity was also identified in unmyelinated axons, myelinated axons, and nerve terminals in the cNTS which were simultaneously identified as CSN primary afferents. These ultrastructural data support the hypothesis that SP immunoreactive first order neurons are involved in the origination of the chemo- and baroreceptor reflexes. Axo-axonic synapses were observed between CSN primary afferent terminals and: (a) unlabeled nerve terminals; (b) other CSN primary afferent terminals; and (c) terminals containing SP. Axo-axonic synapses were also observed between CSN primary afferents which contained SP, and other SP terminals. These observations may mediate the morphological bases for multiple forms of presynaptic inhibition in the cNTS, including those involved in cardiorespiratory integration. In conclusion, our results indicate that SP immunoreactive nerve terminals may be important in both the origination and the modulation of the chemo- and/or baroreceptor reflexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号