首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In holometabolous development, higher insects have two different life forms, the larva and the imago. Both larval and imaginal cells are derived from cells of the blastoderm stage. After the final embryonic wave of mitosis, however, only the imaginal cells remain diploid, proliferate massively and do not differentiate until metamorphosis. The separation of these two pathways was described by many authors as a fundamental process that must take place at a very early stage of development, most probably the blastoderm stage. Mainly by using single cell transplantations at the blastoderm or early gastrula stages, respectively, we found common cell lineages between larval and imaginal structures by clones overlapping in the ectoderm (i.e. larval epidermal cells and imaginal discs within a segment, or larval and imaginal salivary gland cells), the mesoderm (i.e. larval somatic muscles and adepithelial cells), and the endoderm (i.e. larval and imaginal midgut cells). From these findings we conclude that it seems to be a principle in Drosophila embryogenesis that the separation of larval and imaginal pathways is postponed to a later developmental stage.  相似文献   

2.
We have examined the cell lineage of larval and imaginal precursors of the mesodermal anlage between 10% and 60% egg length (EL) by homotopic single-cell transplantations at the blastoderm stage. Clones in the larval somatic muscles and in the fat body were derived from transplantations everywhere between 10% and 60% EL along the ventral side of the embryo. Clones frequently overlap these tissues and can extend over a maximum of four segments in the larval somatic muscles or over two morphologically-distinct parts in the fat body. Clones in the gonadal mesoderm overlap with other mesodermal derivatives and exhibit different mitotic behaviour in the two sexes. We present a blastoderm fate map for the fat body, the larval somatic muscles and the gonadal mesoderm. Clones in the imaginal muscle precursors of the abdomen, as well as of the thorax, always show a common cell lineage with larval somatic muscles and partly with other mesodermal tissues. These clones of imaginal derivatives are always found within a single segment, while the overlapping clone parts in the larval somatic muscles can label up to three segments.  相似文献   

3.
Proliferation in imaginal discs requires cell growth and is linked to patterning processes controlled by secreted cell-signalling molecules. To identify new genes involved in the control of cell proliferation we have screened a collection of P-lacW insertion mutants that result in lethality in the larval/pupal stages, and characterized a novel gene, patufet (ptuf). Inactivation of ptuf by a P element insertion in the 5' untranslated region leads to aberrant imaginal disc morphology characterized by a reduction in mass of discs and disorganization of disc cells where no folding or patterning can be detected. Moreover, apoptotic cells can be observed in these small and abnormal mutant discs. To examine the role of ptuf we have studied its clonal behaviour in genetic mosaics generated by mitotic recombination. The mutation causes reduced cell viability, smaller cell size and stops vein differentiation. Non-autonomous effects, such as abnormal differentiation of wild-type cells surrounding the clones, are also observed. We have cloned the ptuf gene of Drosophila melanogaster and found that it encodes a selenophosphate synthetase, which is the first identified in insects. Mutant flies transformed with the full-length cDNA show complete reversion of lethality and disc phenotype. Northern blot analysis and in situ hybridization indicate that the ptuf gene is expressed in imaginal discs as well as at different stages of development. The synthesis of selenoproteins by the selenophosphate synthetase, the role of selenoproteins in the maintenance of the oxidant/antioxidant balance of the cell and its possible implications in imaginal disc morphogenesis are discussed.  相似文献   

4.
The development and patterning of the Drosophila wing relies on interactions between cell populations that have the anteroposterior (AP) axis and dorsoventral (DV) axis of the wing imaginal disc as frames of reference [1-3]. Each of these cell populations gives rise to a compartment - a group of cells that have their fates restricted by cell lineage - within which cells acquire specific identities through the expression of 'selector' genes [1,2,4]. The genes engrailed (en) and invected (inv), for example, label cells in the posterior compartment and mediate a set of cell interactions that direct the patterning and growth of the wing along the AP axis [1,2,4]. A similar situation has been proposed to exist across the DV axis, along with apterous (ap) as a dorsal selector gene [5], mediating cell interactions by regulating the expression of Serrate (Ser) [6] [7] and fringe (fng) [8]. In ap mutants, the wing is lost [5] [9], and here we report that this phenotype can be rescued by ectopic expression of either Ser or fng and that, surprisingly, the resulting wings have both dorsal and ventral cell fates.  相似文献   

5.
The genes engrailed (en), hedgehog (hh), wingless (wg) and decapentaplegic (dpp) have been shown to play vital organising roles in the development and differentiation of thoracic imaginal discs. We have analysed the roles of these genes in organising the development and differentiation of the genital discs, which are bilaterally symmetrical and possess different primordia, namely, the male and female genital primordia and an anal primordium. Our results suggest that the organising activity of en in genital discs programs the normal development and differentiation of the genital disc by regulating the expression of hh. Hh in turn induces wg and dpp, the genes whose products act as secondary signalling molecules. Moreover, the complementary patterns of wg and dpp expression are essential for the bilateral symmetry and are maintained by mutual repression.  相似文献   

6.
Engrailed is a nuclear regulatory protein with essential roles in embryonic segmentation and wing morphogenesis. One of its regulatory targets in embryos was shown to be the Polycomb group gene, polyhomeotic. We show here that transheterozygous adult flies, mutant for both engrailed and polyhomeotic, show a gap in the fourth vein. In the corresponding larval imaginal discs, a polyhomeotic-lacZ enhancer trap is not normally activated in anterior cells adjacent to the anterior-posterior boundary. This intermediary region corresponds to the domain of low engrailed expression that appears in the anterior compartment, during L3. Several arguments show that engrailed is responsible for the induction of polyhomeotic in these cells. The role of polyhomeotic in this intermediary region is apparently to maintain the repression of hedgehog in the anterior cells abutting the anterior-posterior boundary, since these cells ectopically express hedgehog when polyhomeotic is not activated. This leads to ectopic expressions first of patched, then of cubitus interruptus and decapentaplegic in the posterior compartment, except for the dorsoventral border cells that are not affected. Thus posterior cells express a new set of genes that are normally characteristic of anterior cells, suggesting a change in the cell identity. Altogether, our data indicate that engrailed and polyhomeotic interactions are required to maintain the anterior-posterior boundary and the posterior cell fate, just prior to the evagination of the wing.  相似文献   

7.
8.
9.
10.
To determine whether the remodeling of the well-organized intestinal epithelium during amphibian metamorphosis is regionally regulated along the anteroposterior axis of the intestine, we raised a polyclonal antibody against the Xenopus laevis intestinal fatty acid-binding protein (IFABP), which is known to be specifically expressed in intestinal absorptive cells, and examined immunohistochemically the differentiation, proliferation, and apoptosis of the epithelial cells throughout X. laevis small intestine. During pre- and prometamorphosis, IFABP-immunoreactive (ir) epithelial cells were localized only in the anterior half of the larval intestine. At the beginning of metamorphic climax, apoptotic cells detected by nick end-labeling (TUNEL) suddenly increased in number in the entire larval epithelium, concurrently with the appearance of adult epithelial primordia. Subsequently, the adult primordia in the anterior part of the intestine developed more rapidly by active cell proliferation than those in the posterior part, and replaced the larval epithelial cells earlier than those in the posterior part. IFABP-ir cells in the adult epithelium were first detectable at the tips of newly formed folds in the proximal part of the intestine. Thereafter, IFABP expression gradually progressed both in the anteroposterior direction and in the crest-trough direction of the folds. These results suggest that developmental processes of the adult epithelium in the X. laevis intestine are regionally regulated along the anteroposterior axis of the intestine, which is maintained throughout metamorphosis, and along the trough-crest axis of the epithelial folds, which is newly established during metamorphosis. Furthermore, the regional differences in IFABP expression along the anteroposterior axis of the intestine were reproduced in organ cultures in vitro. In addition, IFABP expression was first down-regulated and then reactivated in vitro when the anterior part, but not the posterior part, of the larval intestine was treated with thyroid hormone (TH) for extended periods. Therefore, it seems that, in addition to TH, an endogenous factor(s) localized in the intestine itself with an anteroposterior gradient participates in the development of the adult epithelium during amphibian metamorphosis.  相似文献   

11.
In the leg and wing imaginal discs of Drosophila, the expression domains of the homeobox genes aristaless (al) and Distal-less (Dll) are defined by the secreted signaling molecules Wingless (Wg) and Decapentaplegic (Dpp). Here, the roles played by al and Dll in patterning the legs and wings have been investigated through loss of function studies. In the developing leg, al is expressed at the presumptive tip and a molecularly defined null allele of al reveals that its only function in patterning the leg appears to be to direct the growth and differentiation of the structures at the tip. In contrast, Dll has previously been shown to be required for the development of all of the leg more distal than the coxa. Dll protein can be detected in a central domain in leg discs throughout most of larval development, and in mature discs this domain corresponds to the distal-most region of the leg, the tarsus and the distal tibia. Clonal analysis reveals that late in development these are the only regions in which Dll function is required. However, earlier in development Dll is required in more proximal regions of the leg suggesting it is expressed at high levels in these cells early in development but not later. This reveals a correlation between a temporal requirement for Dll and position along the proximodistal axis; how this may relate to the generation of the P/D axis is discussed. Dll is required in the distal regions of the leg for the expression of tarsal-specific genes including al and bric-a-brac. Dll mutant cells in the leg sort out from wild-type cells suggesting one function of Dll here is to control adhesive properties of cells. Dll is also required for the normal development of the wing, primarily for the differentiation of the wing margin.  相似文献   

12.
Apoptotic cell death in wing imaginal discs takes place in single cells or small clusters of neighboring cells. These cells are distributed throughout the anlage at early stages and in recognizable territories at late larval and pupal stages. Apoptotic cells remain in the epithelium 2-4 h, prior to being engulfed in place by hemolymph cells. Experimentally induced apoptosis in single cells or territories is accompanied by nonautonomous death of adjacent cells and of cells further away in adjacent territories. These effects are followed by changes in cell proliferation in both territories. Apogenetic mosaics in mutant discs show cell death throughout the anlage. Apoptosis provides a mechanism, in addition to cell proliferation control, for matching territories with different positional values or different genetic specifications.  相似文献   

13.
14.
Signals released from Spemann's organizer, together with ventralizing factors such as BMPs, are necessary to pattern the dorsoventral axis of the vertebrate embryo. We report that a member of the FGF family, fgf-8, not secreted by the axial mesoderm but expressed in a dorsoventral gradient at the margin of the zebrafish gastrula, also contributes to the establishment of the dorsoventral axis of the embryo. Ectopic expression of FGF-8 leads to the expansion of dorsolateral derivatives at the expense of ventral and posterior domains. Moreover, FGF-8 displays some organizer properties as it induces the formation of a partial secondary axis in the absence of factors released from Spemann's organizer territory. Analysis of its interaction with the ventralizing factors, BMPs, reveals that overexpression of FGF-8 inhibits the expression of these factors in the ventral part of the embryo as early as blastula stage, suggesting that FGF-8 acts upstream of BMP2 and BMP4. We conclude that FGF-8 is involved in defining dorsoventral identity and is an important organizing factor responsible for specification of mesodermal and ectodermal dorsolateral territories of the zebrafish gastrula.  相似文献   

15.
A proneural cluster of dorsocentral bristles forms adjacent to the dorsal side of wg-expressing cells in the notum region of the wing imaginal disc. It has been shown that wg activity is required for these structures to form. However, the restriction of this proneural cluster to the dorsal posterior side of the wg expression domain in the anterior compartment of the wing imaginal disc has suggested that Wg signalling itself is insufficient to establish the dorsocentral proneural cluster. Some factor(s) from the posterior side must participate in this action in cooperation with Wg signalling. We have examined the role of Dpp signalling in dorsocentral bristle formation by either ectopically activating or conditionally reducing Dpp signalling. Ubiquitous activation of Dpp signalling in the notum region of the wing imaginal disc induced additional dorsocentral proneural cluster all along the dorsal side of the wg expression domain, and altered wg expression. Conditional loss-of-function of Dpp signalling during disc development resulted in the inhibition of dorsocentral proneural cluster formation and expansion of the wg expression domain. These results suggest that Dpp signalling has two indispensable roles in dorsocentral bristle formation: induction of the dorsocentral proneural cluster in cooperation with Wg signalling and restriction of the wg expression domain in the notum region of the wing imaginal disc.  相似文献   

16.
We have used the GAL4-UAS expression system to increase the level of expression of the Drosophila gene decapentaplegic (dpp) in a pattern approximating its normal pattern in leg and wing imaginal discs. Intermediate increases of dpp expression have little effect in wing discs but high levels of dpp overexpression lead to reduction of the scutellum and duplication of posterior wing structures. In leg discs intermediate increases cause supernumerary outgrowths of ventral leg structures in the anterior-ventral region. Greater increases of dpp expression cause the loss of ventral leg structures with the concomitant fusion of left and right dorsal forelegs. The defects observed in both legs and wings appear to arise through dose-dependent effects of dpp on wingless (wg) expression. A high level of dpp overexpression in the wing disc causes reduction of wg expression in the presumptive scutellar region, consistent with the subsequent reduction of the scutellum. An intermediate increase of dpp expression in leg discs induces the expansion of wg expression into the ventral outgrowths. At higher dpp expression levels, ventral wg expression in leg discs is eliminated, consistent with the loss of ventral leg cuticle. In the leg disc end knob and in the wing margin primordium, where wg and dpp cooperate in producing distal outgrowth, dpp overexpression has no detectable effect either on patterning or on wg expression. We propose that a critical role for dpp in other regions of the leg and wing discs is to reduce or block the expression of wg. This role of dpp is supported by the observation that ectopic wg expression is detected in imaginal discs where dpp signaling is compromised by lowering the activity of one of its receptors, tkv. This antagonism between dpp and wg expression may be critical to assigning only one disc region as the distal organizer.  相似文献   

17.
Many of the mechanisms that govern the patterning of the Drosophila neuroectoderm and mesoderm are still unknown. Here we report the sequence, expression, and regulation of the homeobox gene msh, which is likely to play an important role in the early patterning events of these two tissue primordia. msh expression is first observed in late blastoderm embryos and occurs in longitudinal bands of cells that are fated to become lateral neuroectoderm. This expression is under the control of dorsoventral axis-determination genes and depends on dpp-mediated repression in the dorsal half of the embryo and on fib-(EGF-) mediated repression ventrally. The bands of msh expression define the cells that will form the lateral columns of proneural gene expression and give rise to the lateral row of SI neuroblasts. This suggests that msh may be one of the upstream regulators of the achaete-scute (AS-C) genes and may play a role that is analogous to that of the homeobox gene vnd/NK2 in the medial sector of the neuroectoderm. During neuroblast segregation, msh expression is maintained in a subset of neuroblasts, indicating that msh, like vnd/NK2, could function in both dorsoventral patterning of the neuroectoderm and neuroblast specification. The later phase of msh expression that occurs after the first wave of neuroblast segregation in defined ectodermal and mesodermal clusters of cells points to similar roles of msh in patterning and cell fate specification of the peripheral nervous system, dorsal musculature, and the fat body. A comparison of the expression patterns of the vertebrate homologs of msh, vnd/NK2, and AS-C genes reveals striking similarities in dorsoventral patterning of the Drosophila and vertebrate neuroectoderm and indicates that genetic circuitries in neural patterning are evolutionarily conserved.  相似文献   

18.
Pioneer axon guidance by UNC-129, a C. elegans TGF-beta   总被引:1,自引:0,他引:1  
The unc-129 gene, like the unc-6 netrin gene, is required to guide pioneer motoraxons along the dorsoventral axis of Caenorhabditis elegans. unc-129 encodes a member of the transforming growth factor-beta (TGF-beta) superfamily of secreted signaling molecules and is expressed in dorsal, but not ventral, rows of body wall muscles. Ectopic expression of UNC-129 from ventral body wall muscle disrupts growth cone and cell migrations that normally occur along the dorsoventral axis. Thus, UNC-129 mediates expression of dorsoventral polarity information required for axon guidance and guided cell migrations in C. elegans.  相似文献   

19.
Beta-galactosidase activity is known to exist in Drosophila melanogaster, but a detailed analysis of the tissue-specific patterns of activity has not previously been reported. Such an analysis is of particular interest because Drosophila is commonly used for making transformants that carry fusion genes in which the E. coli beta-galactosidase gene, lacZ, is used as a reporter gene. When these transformants are analyzed for beta-galactosidase activity by using chromogen X-gal staining, the method does not distinguish true fusion-gene activity from endogenous beta-galactosidase activity or from the beta-galactosidase activity of bacterial contaminants. Therefore, detailed maps of endogenous beta-galactosidase activity in this organism would help to prevent errors in data interpretation and would indicate which stages were most appropriate for experiments with the lacZ transformants. We have constructed such maps by applying X-gal staining methods to serial frozen sections and whole mounts of larval, prepupal, pupal, and adult stages of D. melanogaster reared under axenic conditions. Results showed endogenous beta-galactosidase activity in a variety of organs including the larval intestine, spiracles, lymph glands, cellular epidermis, and eye-antenna imaginal discs; the pupal cellular epidermis, lymph glands, imaginal tissues, fat body, and spiracle; and the adult pericardial cells, thoracic nephrocytes, ventriculus, and reproductive system. The good correlation between staining and metamorphic remodeling and phagocytic activity indicates that endogenous beta-galactosidase is physiologically interesting.  相似文献   

20.
To elucidate role of the dermomyotome in the formation of the axial skeleton, we performed extirpation and transplantation experiments on the dermomyotomes in chick and quail embryos. When the thoracic dermomyotomes of chick embryos were removed, the intercostal muscles and the distal ribs were deficient, while the proximal ribs were more or less normal. Quail tissues including the dermomyotome, the ectoderm and the medial edge of lateral plate, were transplanted to replace chick dermomyotomes. In these chimeras, the ribs, which would be deficient without the back-transplantation, were recovered. The cells of the recovered part of the ribs as well as the intercostal muscles were derived from the quail transplants. These findings suggest that the distal rib originated from the dermomyotomes and not the sclerotome as previously believed. To localize the origin of the distal rib further, we removed restricted regions of the dermomyotomes along the mediolateral and the rostrocaudal axis. The more lateral the part of the dermomyotomes that we removed, the more distal the part of the ribs affected. On the contrary, when the rostral and caudal edges of the dermomyotomes were removed, only the vertebral ribs showed extensive deficiencies while removal of the middle part between the edges caused less deficiency. The sternal ribs were not deficient in either case, but were extensively affected when the entire lateral edge of dermomyotomes was included in the region removed. We conclude that the lateral edges of the dermomyotomes are the primordia of the sternal ribs, and the rostral and/or caudal edges of the medial part of dermomyotomes are the primordia of the distal part and not of the proximal part of the vertebral ribs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号