首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, a complex deposition process, which includes two types of macromolecules whose growth behaviors are very different, is investigated. This deposition process is influenced by both short- and long-range interactions. The study of this process is motivated by recent experimental results on the growth of high-κ dielectric thin films using plasma-enhanced chemical vapor deposition. A multi-component kinetic Monte-Carlo (kMC) model is developed for the deposition. Both single- and multi-component cases are simulated and the dependence of the surface microstructure of the thin film, such as island size and surface roughness, on substrate temperature and gas phase composition is studied. The surface morphology is found to be strongly influenced by these two factors and growth regimes governed by short- and long-range interactions are observed. Furthermore, two kMC model-based feedback control schemes which use the substrate temperature to control the final surface roughness of the thin film are proposed. The closed-loop simulation results demonstrate that robust deposition with controlled thin film surface roughness can be achieved under a kMC estimator-based proportional integral (PI) feedback controller in the short-range interaction dominated growth regime, while a kMC model-predictive controller is needed to control the surface roughness in the long-range interaction dominated growth regime.  相似文献   

2.
This work focuses on distributed control of film thickness, surface roughness and porosity in a porous thin film deposition process using the deposition rate as the manipulated input. The deposition process includes adsorption and migration processes and it is modeled via kinetic Monte Carlo simulation on a triangular lattice with vacancies and overhangs allowed to develop inside the film. A distributed parameter (partial differential equation) dynamic model is derived to describe the evolution of the surface height profile of the thin film accounting for the effect of deposition rate. The dynamics of film porosity, evaluated as film site occupancy ratio, are described by an ordinary differential equation. The developed dynamic models are then used as the basis for the design of a model predictive control algorithm that includes penalty on the deviation of film thickness, surface roughness and film porosity from their respective set-point values. Simulation results demonstrate the applicability and effectiveness of the proposed modeling and control approach in the context of the deposition process under consideration.  相似文献   

3.
An inferential state estimation scheme based on extended Kalman filter (EKF) with optimal selection of sensor locations using principal component analysis (PCA) is presented for composition estimation in multicomponent reactive batch distillation. The properties of PCA are exploited to provide the most sensitive dynamic temperature measurement information of the process to the estimator for accurate estimation of compositions. The state estimator is supported by a simplified dynamic model of reactive batch distillation that includes component balance equations together with thermodynamic relations and reaction kinetics. The performance of the proposed scheme is evaluated by applying it for composition estimation on all trays, reboiler, reflux drum and products of a reactive batch distillation column, in which ethyl acetate is produced through an esterification reaction between acetic acid and ethanol. This quaternary system with azeotropism is highly nonlinear and typically suited for implementation of the proposed scheme. The results demonstrate that the proposed EKF estimation scheme with optimal temperature sensor configuration is effective for inferential estimation of compositions in multicomponent reactive batch distillation.  相似文献   

4.
新型柔性压力传感器具有类似人体皮肤的可拉伸性以及对外力的感知特性,可被用于仿生电子皮肤及各种可穿戴电子设备,近年来引起了学术界和产业界的广泛关注。开发具有优异的传感灵敏度且制作工艺简单、节能、成本低廉的柔性压力传感器具有重要的科学与实际意义。本文以银纳米线(AgNWs)为电极材料,聚二甲基硅氧烷(PDMS)为柔性基底,分别采用PDMS相纸原位固化和抽滤转移固化2种方式制备银纳米线/PDMS复合电极,以聚酰亚胺薄膜(PI)为介电层,将两电极面对面层压封装,得到电容式柔性压力传感器。利用激光共聚焦显微镜和扫描电镜比较了2种制作工艺得到的电极微结构,并研究了上述电极微结构结构对传感器灵敏度的影响。研究结果表明,电极表面银纳米线的蓬松程度及粗糙度能显著影响器件灵敏度。电极表面银纳米线处于较密实状态、粗糙度为0.4μm的传感器灵敏度约为0.43kPa-1;当电极表面银纳米线较为蓬松且粗糙度增大为0.7μm时,传感器灵敏度增大到0.65kPa-1。本文制作的柔性压力传感器具有高灵敏度、低成本的特点,可用于诸如脉搏、心率,发声震动,细微压力变化监控等方面。  相似文献   

5.
金刚石薄膜的表面成分和形貌对表面能的影响   总被引:1,自引:0,他引:1  
采用微波等离子体化学气相沉积法制备了(111)面和(100)面金刚石薄膜。测量了金刚石薄膜与液体的接触角、金刚石薄膜表面粗糙度和电阻率。通过扫描电镜、X射线衍射、X射线光电子能谱研究了金刚石薄膜的表面纯度和形貌等对表面能的影响。结果表明:金刚石纯度越高、表面粗糙度越大、晶粒尺寸越小,其表面能越大。经过空气等离子体后处理的金刚石薄膜的纯度和亲水性明显提高。随着在空气中放置时间的增加,亲水性逐渐减弱。在空气中放置相同时间,O2等离子体后处理的金刚石薄膜比H2等离子体后处理的金刚石薄膜亲水性好。  相似文献   

6.
This work focuses on modeling and control of aggregate thin film surface morphology for improved light trapping using a patterned deposition rate profile. The dynamics of the evolution of the thin film surface height profile are modeled by an Edwards–Wilkinson-type equation (a second-order stochastic partial differential equation) in two spatial dimensions. The thin film surface morphology is characterized in terms of aggregate surface roughness and surface slope. These variables are computed with respect to appropriate visible light-relevant characteristic length scales and defined as the root-mean-squares of height deviation and slope of aggregate surface height profiles, respectively. Analytical solutions of the expected aggregate surface roughness and surface slope are obtained by solving the Edwards–Wilkinson equation and are used in the controller design. The model parameters of the Edwards–Wilkinson equation are estimated from kinetic Monte-Carlo simulations using a novel parameter estimation procedure. This parameter dependence on the deposition rate is used in the formulation of the predictive controller to predict the influence of the control action on the surface roughness and slope at the end of the growth process. The cost function of the controller involves penalties on both aggregate surface roughness and mean slope from set-point values as well as constraints on the magnitude and rate of change of the control action. The controller is applied to the two-dimensional Edwards–Wilkinson equation. Simulation results show that the proposed controller successfully regulates aggregate surface roughness and slope to set-point values at the end of the deposition that yield desired levels of thin film reflectance and transmittance.  相似文献   

7.
Diamond films were used as substrates for cubic boron nitride (c-BN) thin film deposition. The c-BN films were deposited by ion beam assisted deposition (IBAD) using a mixture of nitrogen and argon ions on diamond films. The diamond films exhibiting different values of surface roughness ranging from 16 to 200 nm (in Rrms) were deposited on Si substrates by plasma enhanced chemical vapor deposition. The microstructure of these c-BN films has been studied using in situ reflexion electron energy loss spectroscopy analyses at different primary energy values, Fourier transform infrared spectroscopy and high resolution transmission microscopy. The fraction of cubic phase in the c-BN films was depending on the roughness of the diamond surface. It was optimized in the case of the smooth surface presenting no particular geometrical effect for the incoming energetic nitrogen and argon ions during the deposition. The films showed a nanocrystalline cubic structure with columnar grains while the near surface region was sp2 bonded. The films exhibit the commonly observed layered structure of c-BN films, that is, a well textured c-BN volume lying on a h-BN basal layer with the (00.2) planes perpendicular to the substrate. The formation mechanism of c-BN films by IBAD, still involving a h-BN basal sublayer, does not depend on the substrate nature.  相似文献   

8.
文章研究了不同沉积时间下制备的不同厚度纳米金刚石薄膜的微观结构和相组成。采用热丝化学气相沉积法分别制备了沉积时间为52、67、97和127min的纳米金刚石薄膜。采用扫描电子显微镜和拉曼光谱表征薄膜的微观结构和相组成。结果表明,纳米金刚石薄膜表面颗粒尺寸大小无明显变化,约为50nm。随着生长时间增加,金刚石相含量保持稳定没有明显的增加或减小趋势,石墨相有序度以及石墨团簇尺寸随着生长时间增加而增加。  相似文献   

9.
This work focuses on the development of a model predictive control algorithm to simultaneously regulate the surface slope and roughness of a thin film growth process to optimize thin film light reflectance and transmittance. Specifically, a thin film deposition process modeled on a one-dimensional triangular lattice that involves two microscopic processes: an adsorption process and a migration process, is considered. Kinetic Monte Carlo (kMC) methods are used to simulate the thin film deposition process. To characterize the surface morphology and to evaluate the light trapping efficiency of the thin film, surface roughness and surface slope are introduced as the root mean squares of the surface height profile and surface slope profile. An Edwards–Wilkinson (EW)-type equation is used to describe the dynamics of the surface height profile and predict the evolution of the root-mean-square (RMS) roughness and RMS slope. A model predictive control algorithm is then developed on the basis of the EW equation model to regulate the RMS slope and the RMS roughness at desired levels by optimizing the substrate temperature at each sampling time. The model parameters of the EW equation are estimated from simulation data through least-square methods. Closed-loop simulation results demonstrate the effectiveness of the proposed model predictive control algorithm in successfully regulating the RMS slope and the RMS roughness at desired levels that optimize thin film light reflectance and transmittance.  相似文献   

10.
This work demonstrates the use of feedback control, coupled with a suitable actuator design, in manufacturing thin films whose surface morphology is characterized by a desired visible light reflectance/transmittance level. The problem is particularly important in the context of thin film manufacturing for thin film solar cells where it is desirable to produce thin films with precisely tailored light trapping characteristics. Initially, a thin film deposition process involving atom adsorption and surface migration is considered and is modeled using a large-lattice (lattice size=40,000) kinetic Monte Carlo simulation. Subsequently, thin film surface morphology characteristics like roughness and slope are computed with respect to different characteristic length scales ranging from atomic to the ones corresponding to visible light wavelength and it is found that a patterned actuator design is needed to induce thin film surface roughness and slope at visible light wavelength spatial scales, which lead to desired thin film reflectance and transmittance levels. Then, an Edwards–Wilkinson-type equation (a second-order stochastic partial differential equation) is used to model the surface evolution at the visible light wavelength spatial scale and form the basis for the design of a feedback controller whose objective is to manipulate the deposition rate across the spatial domain of the process. The model parameters of the Edwards–Wilkinson equation are estimated from kinetic Monte Carlo simulations and their dependence on the deposition rate is used in the formulation of the predictive controller to predict the influence of the control action on the surface roughness and slope throughout the thin film growth process. Analytical solutions of the expected surface roughness and surface slope at the visible light wavelength spatial scale are obtained by solving the Edwards–Wilkinson equation and are used in the control action calculation. The cost function of the controller involves penalties on both surface roughness and slope from set-point values as well as constraints on the magnitude and rate of change of the control action. The controller is applied to the large-lattice kinetic Monte Carlo simulation. Simulation results demonstrate that the proposed controller and patterned actuator design successfully regulate aggregate surface roughness and slope to set-point values at the end of the deposition that yield desired levels of thin film reflectance and transmittance.  相似文献   

11.
The problem of feedback controller synthesis with objective to control the microstructure during thin-film growth is considered. The problem of the non-availability of closed form dynamic models for the evolution of the microstructure is circumvented by deriving low-order state-space models that approximate the underlying kinetic Monte Carlo simulations. Initially, a finite set of “coarse” observables is identified from spatial correlation functions to represent the coarse microscopic state and capture the dominant characteristics of the microstructure during the deposition process. Subsequently, a state-space model is identified, employing proper orthogonal decomposition and Carleman linearization, that describes the evolution of the coarse observables. The state-space model is subsequently employed to design receding horizon controllers that regulate the surface roughness of the thin-film at a specified set-point during the growth process by manipulating the substrate temperature. The above approach is applied to: (i) a deposition process modeled using solid-on-solid model on a one-dimensional lattice; and (ii) an anisotropic deposition process on a two-dimensional lattice. Closed-loop simulations at various growth rates and in the presence of disturbances are performed to demonstrate the effectiveness of the proposed controller design scheme.  相似文献   

12.
Micron thick diamond films have been studied by spectroscopic ellipsometry (SE). The films were grown, on previously prepared Si(100) substrates, by the plasma enhanced chemical vapor deposition (PECVD) technique. Ex situ SE measurements were carried out on samples grown under different conditions, such as substrate temperature and methane fraction in the gas mixture. An optical model consisting of five layers was constructed in order to explain the SE spectra and to provide the optical and structural parameters of the films. This model was deduced from results of various measurements performed by other characterization techniques (Raman spectroscopy, scanning electron microscopy, atomic force microscopy and positron annihilation spectroscopy) which have revealed the optical and structural parameters of the samples. Its sensitivity to the surface and interface roughness as well as to the absorption of the nondiamond phase of the film is demonstrated. Several values of the percentage of the nondiamond phase can be obtained, with the same fit quality, however, depending on the amorphous carbon reference used in the model. These references were obtained by performing SE measurements on various amorphous carbon films. Finally, our SE analysis has allowed us to monitor the lateral homogeneity of the thickness, surface and interface roughness and nondiamond phase concentration over the diamond film.  相似文献   

13.
Reduction of surface plasmon-polariton losses due to their scattering on metal surface roughness still remains a challenge in the fabrication of plasmonic devices for nanooptics. To achieve smooth silver films, we study the dependence of surface roughness on the evaporation temperature in a physical vapor deposition process. At the deposition temperature range 90 to 500 K, the mismatch of thermal expansion coefficients of Ag, Ge wetting layer, and sapphire substrate does not deteriorate the metal surface. To avoid ice crystal formation on substrates, the working temperature of the whole physical vapor deposition process should exceed that of the sublimation at the evaporation pressure range. At optimum room temperature, the root-mean-square (RMS) surface roughness was successfully reduced to 0.2 nm for a 10-nm Ag layer on sapphire substrate with a 1-nm germanium wetting interlayer. Silver layers of 10- and 30-nm thickness were examined using an atomic force microscope (AFM), X-ray reflectometry (XRR), and two-dimensional X-ray diffraction (XRD2).

PACS

63.22.Np Layered systems; 68. Surfaces and interfaces; thin films and nanosystems (structure and nonelectronic properties); 81.07.-b Nanoscale materials and structures: fabrication and characterization  相似文献   

14.
HfO2 was deposited by chemical vapor deposition on Si, native SiO2, and borosilicate glass surfaces using hafnium (IV) tert butoxide in a mesoscale flow reactor. Undulating thin film topographies were observed by atomic force microscopy on all substrates with peak‐to‐peak periods between 10 and 25 nm in the presence of a temperature gradient perpendicular to flow of 25°C/mm. A computational fluid dynamic model suggests the phenomenon originates from buoyancy driven roll type flow. The thickness uniformity and roughness of the films depended on the flow rate, reactor temperature, and the substrate type. © 2011 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

15.
A super-hydrophobic film was successfully deposited on magnesium alloy AZ31 by the microwave plasma-enhanced chemical vapor deposition (MPECVD) process. The film surface showed a static water contact angle of more than 150°. The hydrophobicity and root mean square roughness of the film surface increased with an increase in deposition time. The anticorrosion resistance of the deposited film was estimated by electrochemical impedance spectroscopy (EIS) measurements. The EIS measurements and appropriate equivalent circuit models revealed that the super-hydrophobic film considerably improved the anticorrosion resistant performance of magnesium alloy AZ31. The anticorrosion mechanism of the super-hydrophobic film was also considered. Moreover, the chemical stability of the super-hydrophobic film in acidic, neutral, and alkaline aqueous solutions was investigated. The super-hydrophobic film showed high chemical stability in acidic and neutral aqueous solutions.  相似文献   

16.
Boron-doped nanocrystalline diamond (BDND) films were deposited on Si(100) by microwave plasma chemical vapor deposition using trimethyl boron as boron source. The surface morphology, microstructure, and electrochemical properties of the BDND films were investigated. Cyclic voltammograms indicated that the BDND film electrode exhibited good reversibility and repeatability of electrode reaction using [Fe(CN)6]3?/4? as redox couple. The non-enzymatic glucose sensor based on the as-prepared BDND film electrode without any modification was developed, and the selective detection of glucose in alkaline solution containing interference species of ascorbic acid and uric acid was demonstrated. The results showed that glucose can be directly oxidized with a wide linear range and high sensitivity, and selectively detected in the presence of uric acid and ascorbic acid in alkaline solution using the as-prepared BDND film electrode.  相似文献   

17.
The effects of surface treatments on the water uptake in thin (1 μm) polyimide (PI) films were studied using a surface acoustic wave (SAW) sensor, X-ray photoelectron spectroscopy (XPS), external reflectance infrared (ERIR) spectroscopy, and contact angle measurements. Surface modification of PI films can affect film properties such as water uptake and adhesion. These properties, in turn, affect the performance and reliability of the devices in which these films are used. The ability to nondestructively study the results of various surface modification techniques in situ, prior to deposition of a metal layer for example, would be of particular benefit in the fabrication process. The results of this work indicate that the SAW sensor can measure extremely small amounts (< 0.003 μg) of water uptake in thin (1.2 μm) PI films. Also, that the water uptake of PI films, as measured by the SAW sensor, is particularly sensitive to sputter cleaning, sputtering/ KOH, and Teflon AF surface treatment. The SAW, XPS, ERIR, and contact angle studies of the Teflon AF treated PI indicate that the concentration of Teflon AF is very high in the surface region of the PI and decreases into the bulk of the film. This work suggests utility of the SAW sensor as a nondestructive and in situ method for monitoring the surface properties of thin polymers in process control applications.  相似文献   

18.
Very high frequency surface acoustic wave (SAW) devices based on the AlN/diamond layered structure are fabricated by direct writing using e-beam lithography on the nucleation side of nanocrystalline diamond (NCD) films deposited by microwave plasma assisted chemical vapor deposition process. The NCD nucleation side is characterized from the point of view of microstructure, morphology and surface topography. Surface roughness as low as 6 nm is reached, which enhances the deposition of AlN film on this flat surface. The interdigital transducers IDTs made in aluminum with lateral resolution down to 600 nm are successfully patterned on the AlN/NCD layered structure with an adapted technological process. Experimental results show that the Rayleigh wave and the higher mode are generated. A high frequency around 4 GHz (mode 1) is obtained for the considered layered structure SAW device, exhibiting a phase velocity of 9200 m/s taking into account the wavelength of 2.4 μm. This value agrees well with calculated values determined from dispersion curves of phase velocity.  相似文献   

19.
In this work, we present an approach to estimation and control of surface roughness in thin film growth using kinetic Monte-Carlo (MC) models. We use the process of thin film growth in a stagnation flow geometry and consider atom adsorption, desorption and surface migration as the three processes that shape film micro-structure. A multiscale model that involves coupled partial differential equations (PDEs) for the modeling of the gas phase and a kinetic MC simulator, based on a high-order lattice, for the modeling of the film micro-structure, is used to simulate the process. A roughness estimator is constructed that allows computing estimates of the surface roughness at a time-scale comparable to the real-time evolution of the process using discrete on-line roughness measurements. The estimator involves a kinetic MC simulator based on a reduced-order lattice, an adaptive filter used to reduce roughness stochastic fluctuations and an error compensator used to reduce the error between the roughness estimates and the discrete roughness measurements. The roughness estimates are fed to a proportional-integral (PI) controller. Application of the proposed estimator/controller structure to the multiscale process model demonstrates successful regulation of the surface roughness at the desired value. The proposed approach is shown to be superior to PI control with direct use of the discrete roughness measurements. The reason is that the available measurement techniques do not provide measurements at a frequency that is comparable to the time-scale of evolution of the dominant film growth dynamics.  相似文献   

20.
《Ceramics International》2022,48(15):21305-21316
Sintered carbides are promising materials for surfaces that are exposed to extreme wear. Owing to their high service load, ceramic-based thin films are coated on carbides using different techniques. In this study, non-toxic and cobalt-free powder metallurgy-sintered carbide samples were coated with TiN, TiAlN, CrAlN, and TiSiN ceramic-based thin film coatings by cathodic arc physical vapor deposition. The microstructure (phase formation, coating thickness, surface roughness, and topography), mechanical properties (hardness, modulus of elasticity, and plasticity indices), and tribological properties (nanoscratch and wear behavior) of the thin film coatings were investigated. No cracks or defects were detected in these layers. The ceramic-based ternary nitride thin film coatings exhibited better mechanical performance than the TiN coating. The TiN thin film coating had the highest average surface roughness, which deteriorated its tribological performance. The ternary nitride thin film coatings exhibited high toughness, while the TiN thin film coating exhibited brittle behavior under applied loads when subjected to nanoscratch tests. The wear resistance of the ternary nitride coatings increased by nearly 9–17 times as compared to that of the TiN coating and substrate. Among all the samples investigated, the substrate showed the highest coefficient of friction (COF), while the TiSiN coating exhibited the lowest COF. The TiSiN thin film coating showed improved mechanical and tribological properties as compared to other binary and ternary nitride thin film coatings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号