首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel kind of organic–inorganic monomer SUASi has been achieved by modifying 5-sulfosalicylic acid (SUA) with 3-aminopropyltrimethoxysilane (APS), subsequently binary and ternary Eu3+ mesoporous hybrid materials with 5-sulfosalicylic acid (SUA)-functionalized SBA-15 and 1,10-phenanthroline (phen) are synthesized by co-condensation of SUASi and TEOS in the presence of Eu3+ complex and Pluronic P123 as a template. Finally, luminescent hybrid mesoporous materials consisting of active rare earth ions (Eu3+)—inert rare earth ions (Y3+, La3+, Gd3+) complex covalently bonded to the mesoporous materials network have been obtained via this sol–gel approach. The physical characterization and photoluminescence of all these resulting materials are studied in detail. Especially the luminescent behavior has been studied with the different ratios of Eu3+–(Y3+, La3+, Gd3+), which suggests that the existence of inert rare earth ions can enhance the luminescence intensity of Eu3+. This may be due to the intramolecular energy transfer between Y3+, La3+, Gd3+, and Eu3+ through the covalently bonded mesoporous framework.  相似文献   

2.
The concentration and the type of Cu2+ species adsorbed on a natural zeolite (Clinoptilolite) was measured and studied by using Electron Paramagnetic Resonance Spectroscopy (EPR). The EPR results together with macroscopic sorption data indicate that the solution ionic strength as well as, the type of electrolyte anion (Cl, NO3 and SO42− ions were examined) affect the amount of Cu adsorbed and the type of Cu surface complexes. The increasing in solution pH affects Cu adsorption quantitatively whereas; the type of surface complexes formed depends mainly on solution ionic strength. For low solution ionic strength, when the inhibition from solution species is limited, the adsorbed Cu is characterized by more than one type of chemical environment. On the contrary, for high solution ionic strength the Cu adsorption is inhomogeneous and EPR spectra show only one type of surface complex. When the anions of the background electrolytes are different, but of equal normality, the results indicate that in the presence of SO42− discernible Cu surface complexes are formed whereas, for Cl and NO3 these surface formations are obtained only for high Cu adsorbed concentrations.  相似文献   

3.
The phosphors LiSrPO4:Gd3+ and LiSrPO4:Gd3+, Pb2+ with different concentration of Gd3+ and Pb2+ were synthesized by combination of re-crystallization and modified solid state diffusion method. The synthesized phosphors were characterized using XRD, SEM and PL spectroscopies. The PL excitation spectra of LiSrPO4:Gd3+ phosphor exhibit peak at 275 nm due to the 8S7/24IJ transition of Gd3+ ions and gave narrow UVB emission at 312 nm. The effect of Pb2+ ions on the PL properties of LiSrPO4:Gd3+have also been investigated. Upon the addition of Pb2+ ions, the excitation of phosphors shows broad peak with maximum at 247 nm, overlapping the Hg 253.7 nm line. This addition of Pb2+ ions improved the emission intensity of narrow band UVB i.e. 312 nm under the excitation of 247 nm. The phosphor could be good candidate as phototherapy lamp phosphor material.  相似文献   

4.
A study on the sorption of Zn2+, Ni2+ and Co2+ onto mixed oxide of Mn and Fe obtained at different hydrothermal conditions and its organic hybrid film modified with polyacrylamide (Mn–Fe oxide/PAM) has been examined. The characterization of inorganic oxides and its composite samples were performed using XRD, SEM, FTIR, XRF and DTA-TGA techniques. The percent sorption of Zn2+, Ni2+ and Co2+ on Mn–Fe oxide at pH 4.5 was 97, 11.85 and 10 % respectively with selectivity order Zn2+ ? Ni2+ > Co2+. The sorption value of Zn2+ at pH 4.5 onto Fe–Mn oxide reached nearly the same value of Zn2+ onto its composite. So, the new compound of Fe–Mn oxide has promising uses for separation of zinc ions while its composite can be used for removal all of these cations.  相似文献   

5.
Derived Hench’s bioglasses with specific ionic dopants Ag+, Cu2+, or Zn2+ have been prepared. The bone-boding ability or bioactivity behavior for the prepared glasses and their glass-ceramic derivatives has been investigated after immersion in phosphate solution for two weeks. Collective Fourier transform infrared absorption spectra (FTIR) and scanning electron microscopic (SEM) studies were conducted in order to study the in-vitro bioactivity behavior. X-ray diffraction (XRD) analysis was carried out to identify the crystallized phases upon thermal heat treatment through a two-step regime. The glasses and their glass-ceramic derivatives were tested to study their antibacterial or antifungal efficiency responding to the doped metal ions. FTIR spectra revealed the generation of two split peaks at about 560 and 605 cm?1, after immersion in (0.2 M) sodium phosphate solution (Na3PO4), signifying the formation of a crystalline calcium phosphate phase, leading to hydroxyapatite formation. SEM examinations show characteristic rounded or nodular microcrystals for hydroxyapatite which support the FTIR data. X-ray diffraction analysis indicated crystallization of the main soda-lime silicate phase (1Na2O.2CaO.3SiO2) besides a secondary silicon phosphate phase (SiO2.P2O5) in the studied glass ceramics. The route of crystallization is discussed on the basis of the presence of 6% P2O5; which facilitates the formation of phase separation and voluminous bulk crystallization of the main soda-lime silicate phase. The introduction of dopants is identified to cause no changes in the precipitated phases, with only minor changes in the percent of the crystalline phases. Experimental data indicate that the glass-ceramic samples are effective in bioactivity and antimicrobial efficiency.  相似文献   

6.
To enhance the photocatalytic activity of monoclinic scheelite (ms) BiVO4 for dye degradation, the heterostructured core (BiVO4)/shell (BiVO4:Eu3+) samples were synthesized by sol–gel method. The samples were characterized by UV–Vis diffuse reflectance spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectra (XPS). The results reveal that as-synthesized photocatalysts are characteristic of ms core/shell structure, responsive to visible light. The XPS spectra confirm that the doped Eu3+ mainly distributed in the outside layer of BiVO4 particle. The valence band (VB) spectra indicate the shell (BiVO4:Eu3+) exhibits a high carrier mobility. The core/shell photocatalysts showed higher photocatalytic activity than pure BiVO4 through degrading Rhodamine B and Methylene blue. The better performance of core/shell heterojunction mainly results from that the Eu3+ ions selectively present on shell layer, increasing the VB value of shell layer (forming a interface electric field with core) and carrier mobility. It is considered that the half-filled 7f–electron configuration of Eu3+ can improve the electron trapping and transfer. Besides, the low PL intensity and high SBET of BiVO4/BiVO4:Eu3+ contribute to enhanced photocatalytic performances.  相似文献   

7.
Sm3+-doped SrO–Al2O3–SiO2 glass-ceramics with excellent luminescence properties were prepared by batch melting and heat treatment. The crystallization behavior and luminescent properties of the glass-ceramics were investigated. The results indicate that the crystal phase in this system is monocelsian (SrAl2Si2O8). Under the excitation with blue light (475 nm) the Sm3+-doped SrO–Al2O3–SiO2 glass-ceramics emit green, orange and red lights centered at 565, 605, 650 and 715 nm, which can be assigned to the 4G5/26HJ/2 (J = 5, 7, 9, 11) electron transitions in Sm3+ ions, respectively. With the increase of nucleation/crystallization temperature, the crystallite part rises from 66 to 79%. Besides, by increasing crystallization temperature or concentration of Sm3+, the samples emission located at 565, 605 and 650 nm is intensified significantly. We envision that, by fine controlling and combining of these three (green, orange and red) lights in an appropriate proportion, the Sm3+-doped glass-ceramics are promising luminescence materials for white light-emitting diodes devices.  相似文献   

8.
The effect of cysteine (RSH), methionine (CH3SR), cystine (RSSR) and N-acetylcysteine (ACC) on the corrosion behavior of mild steel in 40% H3PO4 solution without and with Cl, F, Fe3‰+ and their ternary mixture was studied using both potentiostatic and electrochemical impedance (EIS) techniques under anodic and cathodic polarization conditions. The inorganic additives stimulate the overall corrosion reaction while the amino acids inhibit it with a predominant effect on the dissolution of iron. Both RSH and ACC are adsorbed according to Temkin’s isotherm while adsorption of RSSR and CH3SR follows Frumkin and Langmuir isotherms respectively. The standard free energy of adsorption (ΔG ) was found to be in the order: RSSR > RSH ≅ ACC > CH3SR. The binary mixtures of Cl or F with RSH or CH3SR are the best inhibitors (IE > 90%) while those containing ferric ions or blend I and amino acids are not good corrosion inhibitors. EIS measurements showed that the cathodic reaction, hydrogen evolution, is charge transfer controlled while the anodic one, iron dissolution, is a complex process.  相似文献   

9.
A novel MoV–YbIII bimetallic chain, {[YbIII(bpy)2(DMF)(H2O)][MoV(CN)8]·0.5bpy·4.5H2O}n (1) (DMF = N,N′-dimethylformamide; bpy = 2,2′-bipyridine), has been constructed by the reaction of [Mo(CN)8]3− with Yb3+ and 2,2′-bipyridine. Complex 1 is confirmed as a host–guest supramolecular structure by X-ray structural analysis. The neighboring chains interact with each other with two types of hydrogen bonds and two types of π···π interactions. Thus complex 1 has a unique 3D network. Magnetic analysis of 1 indicates the presence of a strong YbIII single-ion effect owing to spin–orbital coupling within this system.  相似文献   

10.
Reduction of NO by NH3 over metal-promoted zeolites represents the principal reaction in the selective catalytic reduction (SCR) technology for NOx removal from Diesel engine exhausts. It has been established that addition of ammonium nitrate (AN) to the reaction mixture substantially enhances the rate of this reaction, decreasing the temperature necessary for an efficient deNOx process. Nevertheless, the nature of this effect has not been completely elucidated. To investigate the NO?+?AN reaction mechanism, we have used individual reactants labeled with either 15N or 18O (or both isotopes), thus obtaining an experimental background for proposing the route of the SCR accelerated by AN addition. For this study, we have used as the catalysts H-BEA and Fe/H-BEA zeolites with various Si/Al ratios and various amounts and states of the iron species.  相似文献   

11.
12.
The single-crystals of Ca2+, K+-exchanged zeolite Y, and Ca2+, Rb+-exchanged zeolite Y were prepared by using flow method with mixed ion-exchange solution, whose Ca(NO3)2:KNO3 mole ratios were 1:1 (crystal 1) and 1:100 (crystal 2), and Ca(NO3)2:RbNO3 mole ratios were 1:1 (crystal 3) and 1:100 (crystal 4), respectively, with a total concentration of 0.05 M. They were fully dehydrated by vacuum dehydration at 723 K and 1 × 10?6 Torr for 2 days. Their crystals were determined by single-crystal synchrotron X-ray diffraction techniques in the cubic space group \(Fd \overline{3}\) m, respectively, and were refined to the final error indices R 1/wR 2 = 0.057/0.196, 0.073/0.223, 0.055/0.188, and 0.049/0.175 for crystals 1, 2, 3, and 4, respectively. In the structure of crystal 1 (|Ca23K29|[Si117Al75O384]-FAU), 23 Ca2+ ions per unit cell occupy sites I, II′, and II; 29 K+ ions per unit cell are at sites II′, II, and III′. In the structure of crystal 2 (|Ca18.5K38|[Si117Al75O384]-FAU), 18.5 Ca2+ ions per unit cell occupy sites I, I′, and II; 38 K+ ions are at sites I′, II, and III′. In the structure of crystal 3 (|Ca27Rb21|[Si117Al75O384]-FAU), 27 Ca2+ ions per unit cell occupy sites I, II′, and II; 21 Rb+ ions per unit cell are at sites II′, II, and III. In the structure of crystal 4 (|Ca18Rb39|[Si117Al75O384]-FAU), 18 Ca2+ ions per unit cell occupy sites I and II; 39 Rb+ ions per unit cell are at sites I′, II′, II, III, and III′. In the four crystals, the Ca2+ ion which has much smaller size and higher charge than other cations such as K+ and Rb+ energetically preferred at site I and so the first to be filled on it. Unlike Ca2+ ion, no K+ and Rb+ ions are found at site I, which are clearly less favorable for K+ and Rb+ ions.  相似文献   

13.
A novel organic–inorganic hybrid nanomaterial (SBA-15-CA) was prepared by covalent immobilization of chromotropic acid onto the surface of mesoporous silica material SBA-15. Different techniques such as XRD, TEM, FT-IR, N2 adsorption–desorption and TGA analyses were employed to characterize the grafting process. The data showed that the organic moiety (0.41 mmol g?1) was successfully grafted to the SBA-15 and the primary hexagonally ordered mesoporous structure of SBA-15 was preserved after the grafting procedure. SBA-15-CA has been realized as a highly sensitive and selective fluorescent probe towards Fe3+ and I? ions in aqueous media. SBA-15-CA exhibited a remarkable fluorescent quenching in the presence of Fe3+ ion over other competitive cations including Na+, Mg2+, Al3+, K+, Ca2+, Cr3+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, and Pb2+ as well as I? ion among a series of anions including F?, Cl?, Br?, CO32?, HCO3?, CN?, NO3?, NO2?, SCN?, SO42?, H2PO4?, HPO42?, and CH3COO?. A good linear response was observed between the concentration of the quenchers (Fe3+ and I? ions) and fluorescence intensity of SBA-15-CA with detection limits of 1.5?×?10?7 M for Fe3+ and 0.2?×?10?7 M for I?. Moreover, the effects of various pH values on the sensing ability of SBA-15-CA were investigated. Finally, the proposed method was successfully utilized for the determination of Fe3+ and I? ions in river water, well water and tap water samples.  相似文献   

14.
Parish EJ  Qiu Z 《Lipids》2004,39(8):805-809
This article reviews the utility of dioxiranes in the oxidation of 3beta-substituted delta5-sterols. Dioxiranes are the smallest cyclic peroxides that contain a carbon atom. They can be generated in situ from Oxone (2KHSO5.KHSO4.K2SO4) and a ketone. Dioxiranes are versatile oxidizing agents. The most common reaction of dioxiranes is epoxidation, with nearly 1:1 ratios of alpha/beta isomer products in all cases. delta5-Steroids with different side chains were epoxidized by dioxiranes generated in situ from several commercially available ketones. Although ketones function as catalyst, they were used in about an equivalent amount or large excess to accelerate the reaction.  相似文献   

15.
In this work a Tm3+-doped fluoride glass with good thermal stability is prepared. Intensive 1.8 and 2.3 μm emissions are obtained when pumped by an 800 nm laser diode. And the 1.48 μm emission is limited because of the much strong radiation around 1.8 μm. On the basis of absorption spectrum, radiative properties are investigated and discussed according to Judd–Ofelt parameters (Ω2, Ω4, Ω6) calculated by Judd–Ofelt theory. Besides, absorption and emission cross-sections of 3 F 43 H 6 transition are figured out and analyzed by using McCumber and Beer–Lambert theories. The high gain around 1.8 μm was predicted by the large σemiτrad product (29.8 × 10–21 cm2 ms). The results obtained indicate that the Tm3+-doped fluoride glass can be a promising 2.0 μm laser glass material.  相似文献   

16.
Tb3+-doped SrO–Al2O3–SiO2 glass-ceramics are prepared by melting under ambient atmosphere and followed by two-step heat treatment approach. Extensive differential thermal analysis, X-ray diffraction and scanning electron microscope characterizations are applied to investigate thermal properties, crystal structure, and morphology of these glass-ceramics. The results indicate that the optimal ratio of two nucleation agents (TiO2 and ZrO2) is 3:1 (molar fraction) in glass-ceramics. In addition, several heat treatment schedules are developed to study the influence of treatment temperature on luminescence properties of Tb3+- doped glass-ceramics. The results demonstrate that there are four emission bands located at 489, 547, 588 and 623 nm under 376 nm ultraviolet excitation, corresponding to 5D47Fj (j = 6, 5, 4, 3) transitions of Tb3+, respectively. At last, the corresponding chromaticity coordinates are calculated and constructed, which indicates that the Tb3+ glass-ceramic can emit approximate white light under 376 nm ultraviolet excitation when they nucleated at 950°C and crystallized at 1050°C. The white immersion approached standard illuminant C as the crystallization temperature increased.  相似文献   

17.
Zirconium umbite, K2ZrSi3O9·H2O, is a microporous framework ion exchanger whose potential as a carrier for Zn2+ ions in antimicrobial formulations has not yet been investigated. Accordingly, batch Zn2+-exchange kinetics of synthetic zirconium umbite (K-UM) and the subsequent antimicrobial action of the zinc-bearing phase (Zn-UM) against Staphylococcus aureus and Escherichia coli are reported. Nonstoicheiometric over-exchange of Zn2+ for K+ was observed and attributed to hydrolysis and complexation reactions of Zn2+ within the umbite framework. The exchange process, which was described by a simple pseudo-first-order model (k 1 = 2.69 × 10−4 min−1, R 2 = 0.992), did not achieve equilibrium within 120 h at 25 °C, by which time the uptake of zinc was found to be 1.04 mmol g−1. The minimal bactericidal concentrations of Zn-UM for E. coli and S. aureus were found to be >10 g cm3 and <1.0 g cm3, respectively.  相似文献   

18.
Formation of carbamates by amino groups of poly(ε-l-lysine) (ε-PL) and cross-linking of ε-PL were studied by using 13C and 15N solid-state NMR. It is a characteristic found in ε-PL cast from basic aqueous solution exposed to the air or gaseous CO2. It is not observed in ε-PL cast from acidic aqueous solution and ε-PL cast from degassed aqueous solution under CO2 free environment. The carboxyl carbon and amide nitrogen appear at 164 ppm in 13C spectrum and 92 ppm in 15N spectrum, respectively, which arise when some amino groups of ε-PL react with gaseous CO2 to make carbamates. In addition to these peaks a peak at 171 ppm appears. We assigned it to amide C=O carbons which can not make intermolecular hydrogen bondings since there exist bulky carbamates groups close to these C=O groups. Self-assembly of ionic pairs of ammonium groups and carbamate anions leads to cross-linking of ε-PL.  相似文献   

19.
The effect of Al substitution on electrical and dielectric parameters of Ni–Zn ferrite has been discussed in the present work. The phase identification, surface morphology was studied using X-ray diffractometer (XRD), scanning electron microscope (SEM), respectively. The XRD patterns confirm the single-phase formation of these ferrites. With Al3+, substitution lattice parameter decreases due to smaller Al3+ ions replacing Fe3+ ions. The average grain size obtained from SEM results are in the range of 390–27 nm. The DC resistivity was observed to increase with increasing Al3+ ions concentration due to the unavailability of Fe3+ ions. Dielectric constant (\(\upvarepsilon ^{\prime }\)) and dielectric loss tangent (tan δ) have been studied as a function of frequency (1 kHz–10 MHz) and temperature (50–300 °C). The observed results are explained on the basis of interfacial polarization as predicted by Maxwell and Wagner.  相似文献   

20.
Sections are constructed for WSi2Me VB2 of the quaternary systems W–Si–(V, Nb, Ta)–B described by eutectic diagrams of state with T eut (1940 ± 20), (1980 ± 20) and (2020 ± 30)°C and a boride content in the eutectics of 35, 20 and 15 mol.% respectively. Translated from Novye Ogneupory, No. 3, pp. 41 – 44, March 2009.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号