首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The structure of CaO–Al2O3–B2O3–BaO glassy slags with varying mass ratio of BaO to CaO has been investigated by Raman spectroscopy, 11B and 27Al magic angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy and atomic pair distribution function (PDF). 11B MAS-NMR spectra reveal the dominant coordination of boron as trigonal. Both simulations on 11B MAS-NMR spectra and Raman spectroscopy indicate the presence of orthoborate as the primary borate group with a few borate groups with one bridging oxygen and minor four-coordinated boron sites. 27Al MAS-NMR and PDF show the Al coordination as tetrahedral. Raman spectral study shows that the transverse vibration of AlIV–O–AlIV and AlIV–O–BIII, stretching vibration of aluminate structural units and vibration of orthoborate and pyroborate structural groups. A broader distribution of Al–O bond lengths in PDF also supports the enhanced network connectivity. Viscosity measurements show the increase in viscosity of molten slags with increasing mass ratio of BaO to CaO, which further attributes to the enhanced degree of polymerization of the aluminate network.  相似文献   

2.
A colorless Ce3+‐activated borosilicate scintillating glass enriched with Gd2O3 is successfully synthesized in air atmosphere for the first time. The full replacement of 10 mol% BaO by Al2O3, and the partial substitution of 3 mol% SiO2 by Si3N4 in the designed glass composition are crucial for this success. The role of Al3+ on tuning the optical properties of Ce3+‐activated borosilicate scintillating glass synthesized in air are analyzed by optical transmittance, X‐ray absorption near edge spectroscopy (XANES) spectra, photoluminescence (PL) and radioluminescence (RL) spectra. The results suggest that the stable Ce4+ ions can be effectively reduced to stable Ce3+ ions by the full replacement of BaO by Al2O3, and both the PL andRL intensity of the designed borosilicate scintillating glass are enhanced by a factor of 6.7 and 5.2, respectively. The integral RL intensity of the synthesized Ce3+‐activated borosilicate scintillating glass is ~17.2%BGO, with a light output of about 1180 ph/MeV. The strategy of substituting BaO by Al2O3 will trigger more scientific and technological considerations in designing novel fast scintillating glasses.  相似文献   

3.
In the low temperature sinterable glass system of BaO–B2O3–SiO2, the structural changes of the glasses and the resultant changes in the properties of the glasses were examined as a function of BaO content. 11B MAS-NMR analysis was conducted in order to examine the coordination number of borons in the glass. It showed that the amount of O4 was greatest at 35 mol% of BaO. The glass transition temperature, hardness, thermal expansion coefficient and dielectric constant of the glasses were examined and the results were explained on the basis of the structural change.  相似文献   

4.
Stakheev  A. Yu.  Gabrielsson  P.  Gekas  I.  Teleguina  N. S.  Bragina  G. O.  Tolkachev  N. N.  Baeva  G. N. 《Topics in Catalysis》2007,42(1-4):143-147
Pt/Al2O3 and Pt/BaO/Al2O3 catalysts (1 wt% Pt, 10 wt%BaO) were sulfated under conditions simulating a real NSR catalyst operation. Comparative TPR and XPS studies of sulfur removal from Pt/Al2O3 and Pt/BaO/Al2O3 catalysts indicate that the sulfur removal from Al2O3 surface precedes reductive decomposition of BaSO4 (250–400 °C). Barium sulfate decomposition started with further increase in desulfation temperature at the point of surface atomic ratio Ba:S = 1 (~450o). Simultaneously, an intensive formation of sulfide species on the catalyst surface was observed. Thermodynamic analysis of the desulfation process allows us to hypothesize that barium sulfide formation may hinder sulfur removal under reducing conditions.  相似文献   

5.
《Ceramics International》2020,46(7):9025-9029
A series of phosphate glasses composed of (65-x)P2O5–15BaO–5Al2O3–5ZnO–10Na2O-xB2O3 (x = 0, 2, 4, 6, and 8 mol%) were successfully prepared using the melt-quenching method. The effects of the addition of boron trioxide (B2O3) on the physical, structural, and mechanical properties of the glasses were investigated. As the added content of B2O3 increased from 0 to 6 mol%, the glass exhibited increased density and transition temperature, and decreased molar volume, indicating optimization of the glass stability. Raman spectroscopy revealed that the introduction of B2O3 transformed the glass from a chain structure to a three-dimensional network structure, which enhanced the chemical stability of the glass by the cross-linking of long phosphate chains with boron ions. Regarding the mechanical properties, when the boron content was 6 mol%, the flexural strength of the glass was 41% higher than that of the undoped boron, while the Vickers hardness and Knoop hardness values increased by 20.58% and 7.05%, respectively, and the fracture toughness was slightly decreased. In general, improving the mechanical properties of phosphate glass is of great significance for increasing the applications of this glass.  相似文献   

6.
The glass transition temperatures and the thermal expansion coefficients below and above the glass transition range are determined for barium aluminoborate glasses over a wide range of compositions containing up to 60 mol % BaO and 35 mol % Al2O3. The behavior of these characteristics is studied depending on the Al2O3 concentration at constant BaO/B2O3 ratios (from 0.2 to 1) and upon replacement of B2O3 by BaO at constant Al2O3 contents (up to 30 mol %). The influence of composition on the properties is interpreted within the concepts of the barium aluminoborate glass structure.  相似文献   

7.
This study investigated the effect of Al2O3/SiO2 mass ratios on the equilibrium crystallization behavior of synthesized CaO–SiO2–MgO–Al2O3–Cr2O3 stainless steel slags to understand the selective concentration behavior of Cr into a primary Mg(Cr,Al)2O4 spinel phase during slag solidification and to determine the leaching stability of Cr-containing slags. The spinel solid solution was precipitated within the temperature range of 1600-1400 °C, where the Cr/(Cr+Al) mole ratio in the Mg(Cr,Al)2O4 spinel phase gradually decreased for slags with higher Al2O3/SiO2 mass ratios. When the Al2O3/SiO2 mass ratio increased from 0.125 to 0.5, the Cr content in the amorphous glass phase gradually decreased, with a subsequent increase in the Cr content in the crystalline phase. For slags with a unit Al2O3/SiO2 mass ratio and MgO mole percent comprising less than the combined sum of the Cr2O3 and Al2O3 mole percents, the Cr content in the amorphous glass phase increased, which was correlated with the enhanced substitution of Cr3+ with Al3+ in the spinel. The trend of the amount of Cr-related ions in the leachate was consistent with the trend of Cr in the amorphous glass phase: the amount decreased for slags with Al2O3/SiO2 mass ratios from 0.125 to 5 and then increased for slags with an Al2O3/SiO2 mass ratio of 1. The results suggest that the addition of appropriate amounts of Al2O3 to stainless steel slags could be conducive to stabilizing Cr into the primary spinel phase to minimize Cr leaching into the environment.  相似文献   

8.
In this study, the effect of CaO and BaO substitution on the viscosity and structure of CaO‐BaO‐SiO2‐MgO‐Al2O3 slags was investigated. The results showed that the viscosity increased with an increase in the BaO substitution concentration, which was correlated to an increase in the degree of polymerization (DOP) of the slag structural units as the activation energy increased from 207.9 to 263.8 kJ/mol for viscous flow. Deconvolution and area integration of the Raman spectrum of the slag revealed that the ratio of Q3/Q2 (Qi, i is the number of O0 in a [SiO4]‐tetrahedral unit) increased and NBO/Si (nonbridging oxygen per unit silicon atom) decreased with higher BaO content. It was also observed from the 27Al magic angles pinning nuclear magnetic resonance (27Al MAS‐NMR) spectrum that the relative proportion of AlIV increased, while that of AlV decreased because of the decrease in the percentage of nonbridging oxygen (O?), indicating the polymerization of the slag. O1s X‐ray photoelectron spectroscopy (XPS) was also carried out to semi‐quantitatively analyze the various types of oxygen anions present in the slag. The XPS results correlated well with the results obtained from the analysis of the Raman and 27Al MAS‐NMR spectra of the slags and its viscous behavior.  相似文献   

9.
Lithium aluminoborate glasses have recently been found to undergo dramatic changes in their short-range structures upon compression at moderate pressure (~1 GPa), most notably manifested in an increase in network forming cation coordination number (CN). This has important consequences for their mechanical behavior, and to further understand the structural densification mechanisms of this glass family, we here study the effect of P2O5 incorporation in a lithium aluminoborate glass (with fixed Li/Al/B ratio) on the pressure-induced changes in structure, density, and hardness. We find that P2O5 addition results in a more open and soft network, with P-O-Al and P-O-B bonding, a slightly smaller fraction of tetrahedral-to-trigonal boron, and an unchanged aluminum speciation. Upon compression, the cation-oxygen CNs of both boron and aluminum increase systemically, whereas the number of bridging oxygens around phosphorous (Qn) decreases. The glasses with higher P2O5 content feature a larger decrease in Qn (P) upon compression, which leads to more non-bridging oxygen that in turn fuel the larger increase in CN of B and Al for higher P2O5 content. We find that the CN changes of Al and B can account for a large fraction (around 50% at 2 GPa) of the total volume densification and that the extent of structural changes (so-called atomic self-adaptivity) scales well with the extent of volume densification and pressure-induced increase in hardness.  相似文献   

10.
《应用陶瓷进展》2013,112(6):325-331
Abstract

CaO–BaO–Al2O3–SiO2–GeO2 glasses doped with 0·00–16·67 wt-% Y2O3 have been prepared by conventional melt quenching method. The influence of Y2O3 addition on the properties and structure of the glasses has been investigated. The results show that, with the introducing of Y2O3, the density, glass transition temperature and thermal expansion coefficient of the glass increase but the chemical durability declines. In addition, compared with the glass without Y2O3, the bend strength of the glass including 4·76 wt-% Y2O3 increased from 54 to 110 Mpa. The possible mechanism is that yttria acts as a network former in the structure and makes the island shape network unit repolymerisation by forming Ge–O–Y bond. The absorption strength caused by hydroxyl vibration decreased up to completely disappearance as the Y2O3 content increased continuously. The introducing of yttria in the composition causes the conversion from four coordination to higher coordination germanium, which decreases non-bridge oxygen (NBO) and weakens hydroxyl characteristic absorption.  相似文献   

11.
SO x uptake, thermal regeneration and the reduction of SO x via H2(g) over ceria-promoted NSR catalysts were investigated. Sulfur poisoning and desulfation pathways of the complex BaO/Pt/CeO2/Al2O3 NSR system was investigated using a systematic approach where the functional sub-components such as Al2O3, CeO2/Al2O3, BaO/Al2O3, BaO/CeO2/Al2O3, and BaO/Pt/Al2O3 were studied in a comparative fashion. Incorporation of ceria significantly increases the S-uptake of Al2O3 and BaO/Al2O3 under both moderate and extreme S-poisoning conditions. Under moderate S-poisoning conditions, Pt sites seem to be the critical species for SO x oxidation and SO x storage, where BaO/Pt/Al2O3 and BaO/Pt/CeO2/Al2O3 catalysts reveal a comparable extent of sulfation. After extreme S-poisoning due to the deactivation of most of the Pt sites, ceria domains are the main SO x storage sites on the BaO/Pt/CeO2/Al2O3 surface. Thus, under these conditions, BaO/Pt/CeO2/Al2O3 surface stores more sulfur than that of BaO/Pt/Al2O3. BaO/Pt/CeO2/Al2O3 reveals a significantly improved thermal regeneration behavior in vacuum with respect to the conventional BaO/Pt/Al2O3 catalyst. Ceria promotion remarkably enhances the SO x reduction with H2(g).  相似文献   

12.
In this paper, Al2O3 was added to CaO–SrO–B2O3–SiO2 sealing system to tailor the structure of sealing glass–ceramics and glass–ceramics/metal interfacial reaction. The addition of alumina in glasses contributes to increasing fraction of bridging oxygen in silica tetrahedral as well as the change in boron environment from three-fold to four-fold (BO4  BO3). The devitrification tendency of glasses also decreases with increasing Al2O3 content. The condensed glass structure and increasing residual glass content play opposite roles on the interfacial reaction, consequently resulting in a maximum fraction of Cr6+ in reaction couples between Cr2O3 and glass containing 6 mole% Al2O3 at 700 °C. In addition, the good bonding can be observed at the interface between Cr-containing interconnect (Crofer 22APU) and glass containing 4 mole% Al2O3, held at 700 °C for 100 h. The reported results support the suitability of the prepared glass–ceramics as sealing materials for SOFC applications.  相似文献   

13.
Non-conducting BaO-B2O3-Al2O3-SiO2 parent glasses designed for solid oxide fuel cell (SOFC) sealing applications were prepared using the melt-quenching technique. The glass formation region was determined according to phase equilibrium relations and was found to be in the composition range 70BaO-(x)Al2O3-(10−x)B2O3-20SiO2 where 3.0 < x < 6.0 wt%. The conductivity values obtained conductivity ranged from 10−5 to 10−10 S/cm at temperatures between 600 and 850 °C. The batch compositions presented a threshold of dc conductivity near 70BaO wt% with a quasi linear behavior with the decrease of the BaO content. Different values of conduction activation energy were observed at temperatures above the glass transition temperature (Tg) (up to 700 °C), which were attributed to the thermal bond-breaking of non-bridging oxygen (NBO) defects. The experimental results of the electrochemical characterization by impedance spectroscopy of glass–ceramic interfaces with yttria-stabilized zirconia (YSZ) acting as solid ionic conductor electrolyte are presented and discussed.  相似文献   

14.
Degree of Polymerization of Aluminosilicate Glasses and Melts   总被引:1,自引:1,他引:0  
This paper presents the results of analyzing the data available in the literature on the structure and properties of silicate glasses and melts that contain Ti4+, Al3+, and Fe3+ cations in addition to alkali and alkaline-earth cations. It is established that the aforementioned multivalent cations in glasses and melts have a coordination number of four and play the role of network-formers. Aluminosilicate glasses and melts with the mole fraction ratio Al2O3/M 2(M)O = 1 are of special interest. For these glasses, the structure is considered to be completely polymerized and, contrary to traditional concepts, their properties depend on the concentration ratio Al2O3/SiO2. Taking into account that the structure of aluminosilicate glasses involves unusual structural units (such as triclusters) and a certain number of nonbridging oxygen atoms, a formula is proposed for calculating the degree of polymerization. The proposed formula is used to calculate the degree of polymerization for a number of Na2O · Al2O3 · mSiO2 glasses and the CaO · Al2O3 · 2SiO2 glass. It is demonstrated that the calculated degrees of polymerization correlate with the experimentally measured viscosities of the relevant melts.  相似文献   

15.
Quaternary alkaline earth zinc‐phosphate glasses in molar composition (40 ? x)ZnO – 35P2O5 – 20RO – 5TiO2xEu2O3 (where x=1 and R=Mg, Ca, Sr, and Ba) were prepared by melt quenching technique. These glasses were studied with respect to their thermal, structural, and photoluminescent properties. The maximum value of the glass transition temperature (Tg) was observed for BaO network modifier mixed glass and minimum was observed for MgO network modifier glass. All the glasses were found to be amorphous in nature. The FT‐IR suggested the glasses to be in pyrophosphate structure, which matches with the theoretical estimation of O/P atomic ratio and the maximum depolymerization was observed for glass mixed with BaO network modifier. The intense emission peak was observed at 613 nm (5D07F2) under excitation of 392 nm, which matches well with excitation of commercial n‐UV LED chips. The highest emission intensity and quantum efficiency was observed for the glass mixed with BaO network modifier. Based on these results, another set of glass samples was prepared with molar composition (40 ? x)ZnO – 35P2O5 – 20BaO – 5TiO2xEu2O3 (x=3, 5, 7, and 9) to investigate the optimized emission intensity in these glasses. The glasses exhibited crystalline features along with amorphous nature and a drastic variation in asymmetric ratio at higher concentration (7 and 9 mol%) of Eu2O3. The color of emission also shifted from red to reddish orange with increase in the concentration of Eu2O3. These glasses are potential candidates to use as a red photoluminsecent component in the field of solid‐state lighting devices.  相似文献   

16.
In this study, we prepared (4.8+x)BaO·CaO·2Al2O3 (0?≤?x?≤?1.6) aluminates by calcining the precursors under static air at 1500?°C for 120?min. The precursor powders were prepared using a liquid phase co-precipitation method. The effects of the molar content of BaO on the phase composition (before and after melting), melting properties, environmental stability, evaporation, and emission properties of the aluminates was investigated systematically The results showed that the phase of the aluminates completely transformed from Ba5CaAl4O12 to Ba3CaAl2O7 with an increase in the BaO content. After melting, the phase changed from Ba5CaAl4O12 to a mixed phase of Ba5CaAl4O12 and Ba3CaAl2O7. In the high-temperature molten state, the aluminates were in the ionic state, which generated a relatively low-energy Ba5CaAl4O12 phase during cooling crystallization. With every 0.4?mol increase in the BaO content, the initial melting temperature of the aluminates decreased by 10–20?°C, while the environmental stability deteriorated gradually. When the aluminates reacted with H2O and CO2 in the air, the original phase still existed and the characteristic peaks gradually broadened, but with the formation of Ca(OH)2, CaCO3, and BaCO3. At 1050?°C, with an increase in the BaO content, the evaporation rate of the Ba-W cathodes increased and the emission current density first increased and then decreased. The main components of the Ba-W cathode evaporation were Ba and BaO. At n(BaO):n(CaO):n(Al2O3)?=?6:1:2, the Ba-W cathode showed the best emission performance, and its pulse emission current density at 1050?°C was as high as 35.31?A/cm2.  相似文献   

17.
The processes occurring in the glass shells of bactericidal lamps are considered. It is shown that it is expedient to develop new compositions of uviol glasses with elevated radiation and optical resistance (ROR). It was found that an increase in the total amount of alkaline-earth oxides and BaO individually at the expense of CaO +MgO decreases solarization of glasses of the SiO2-MgO-CaO-BaO-Na2O-K2O system. The introduction of Fe2O3 in the composition with a decrease in the content of MgO for a certain concentration of Fe2+ and Fe3+ improves the anti-reflection properties of uviol glasses in the ultraviolet spectral region and increases the ROR to short-wave ultraviolet radiation. Addition of metallic aluminum increases the Fe2+Fe3+ ratio. The physicochemical properties of the synthesized compositions are presented.  相似文献   

18.
《Ceramics International》2022,48(16):23104-23110
Herein, Mg–Al–Si–Ba–O-based glass ceramics were studied as potential candidates to protect Mn–Co–Ni–O-based negative temperature coefficient (NTC) thermistors at high temperatures such as 900 °C. The ceramics were prepared in three glass formulations (1#: 15MgO–15Al2O3-44.7SiO2–25BaO, 2#: 17MgO–17Al2O3–41SiO2–25BaO and 3#: 17MgO–17Al2O3–41SiO2–20BaO–5Y2O3 (in mol%)) and their glass-transition temperatures (Tg) were determined using the differential scanning calorimetry (DSC) method. Scanning electronic microscopy (SEM) and X-ray diffraction (XRD) were used to characterize the parent glasses and glass-ceramic coatings. The sealing effects of the glass ceramics were examined by conducting an insulation test. The glass-ceramic sealing structures were subjected to 1000 thermal shock cycles at temperatures varying from room temperature to 900 °C. Notably, the sealing structure of glass-ceramic coating 1# was compact at a Tg of 760.9 °C. The glass-ceramic coatings effectively maintained the NTC properties of the sensitive ceramics in all three formulations. Interestingly, the glass-ceramic coating 3# containing Y2O3 demonstrated an increase in electrical resistance. Both the NTC thermistors coated with 1# and 2# glass formulations successfully passed 1000 thermal shock cycles without visible failures, and their resistance change ratios were well below the requisite 20%.  相似文献   

19.
Based on the R2O - CaO - BaO - B2O3 - Al2O3 - SiO2 system, the areas of glass formation are defined and the composition used as a glass matrix for heat-resistant enamels is determined. The effect of Fe3O4, Co2O3, and MnO2 additives on adhesion strength and heat stability is investigated. The optimal compositions are identified. The dependence of the structure and phase composition of enamel coatings on the content of the specified additives is established.  相似文献   

20.
Understanding the composition and temperature dependence of viscosity of silicate liquids is of the highest importance not only for geological processes but also for production of industrial glass. In this work, we have determined the temperature dependence of equilibrium liquid viscosity of 36 alkaline‐earth sodium boroaluminosilicate liquids as a function of the Si/Al ratio and the type of alkaline‐earth oxide (MgO, CaO, SrO, or BaO). We demonstrate that the isokom temperature at 1012 Pa s (i.e., the glass transition temperature) generally increases with increasing Si/Al ratio, whereas the isokom temperatures at 104 and 101.5 Pa s exhibit a decrease with increasing [Al2O3] in the peraluminous regime. The isokom temperatures decrease with increasing alkaline‐earth size in the peralkaline regime, whereas they increase with increasing alkaline‐earth size in the peraluminous regime. The liquid fragility index m exhibits a minimum value at an intermediate Si/Al ratio, with the position of the minimum increasing to a higher value of [Al2O3] with increasing alkaline‐earth size. We have discussed our findings in terms of the underlying structural and topological changes as a function of composition and temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号