首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
美国专利US2006 13719中公布了一种高强度耐磨损烧结Al基复合材料的制造工艺。Al合金基体的主要成分(质量分数%)是:Zn3~10、Mg0.5~5和Cu0.5~5,硬质颗粒增强相含量为0.1-10,可选择的硬质颗粒增强相包括碳化硅、硼化铬和碳化硼粒子等。硬质颗粒增强相均匀分散在Al合金基体上,MgZn2、A12Mg3Zn3和CuAl2等金属间化合物相也弥散沉淀在Al合金基体上。  相似文献   

2.
美国专利US2005 236075介绍了一种具有高断裂韧性的挤压态Mg—Zn—Mg—Cu合金的制备工艺。这种合金的成分(质量分数)Cu1.95%-2.3%、Mg1.9%-2.3%、Zn8.45%-9.4%、Zr0.05%-0.25%、Si≤0.15%、Fe≤0.15%、Mn≤0.1%.合金中还可以添加Cr0.05%-0.2%、Sc0.01%~0.1%、Ti0.01%~0.2%。  相似文献   

3.
新型铝合金     
日本专利JP2005 171277中公布了两种沉淀硬化型Al合金,一种是Al-Mg—Si合金,另一种是Al—Cu合金。Al-Mg-Si合金的主要合金成分(质量分数):Mg0.8%-1.2%、Si0.4%-0.8%、Cu0.15%-0.4%,其拉伸强度不低于340MPa、0.2%屈服强度不低于320MPa、延伸率不低于14%;Al-Cu合金的主要合金成分(质量百分数):Cu3.5%-5%、Mg0.2%-0.8%,其拉伸强度不低于490MPa、0.2%屈服强度不低于440MPa、延伸率不低于11%。  相似文献   

4.
中国发明专利申请公开说明书CN1676646中介绍了一种Mg合金及其制备方法。该Mg合金中含有(质量分数):Gd6%~15%、Y1%~6%、Zr0.35%~0.8%和Ca0~1.5%,杂质元素(Si、Fe、Cu和Ni)含量低于0.02%。该Mg合金的制备方法是:将纯Mg,Mg—Gd、Mg—Y和Mg-Zr合金预热到180~220℃;在SF6/C02气氛中将纯Mg熔化;熔体在670~690℃时向其中加入0~1.5%的纯Ca:在720-740℃时加入20%-50%的Mg—Gd和3.4%-20%的Mg—Y;  相似文献   

5.
欧洲专利EP1464719中公布了一种高强度7000系Al—Zn—Mg—Cu铝合金的制造技术。合金的主要成分是(质量分数):Zn8.3%。13.5%、Mg2%-3.8%、Cu1%-2.7%、Mn0-0.5%、Cr0-0.4%、Zr0-0.2%、Ti 0.05~0.15%,其余是Al。合金的制备工艺是:将合金熔液以〈600℃/min的降温速率凝固,淬火至室温,在470℃进行48h的均质化处理。最终获得的合金的抗拉强度〉630MPa.屈服强度〉600MPa,延伸率〉7%。该合金可应用于航空工业等领域。  相似文献   

6.
美国专利US2006 21683中介绍了一种新型铸造Al合金。该合金的主要合金成分(质量分数)是:Si4%~9%、Mg0.1%~0.7%、Zn≤5%、Fe≤0.15%、Cu≤4%、Mn≤0.3%、B≤0.05%、Ti≤0.15%,其余是Al。与采用类似工艺制备的E357合金相比,新型合金在室温和高温条件下的拉伸强度和屈服强度等力学性能较高。该合金适于用来制造航空器和汽车等交通工具上使用的铸件。  相似文献   

7.
日本专利JP2005 105308中公布的Al合金板材的合金成分为(质量分数):Mg2.8%~4.8%、Cu0.7%~1.7%、Ag0.1%~0.5%,Mn、Cr及Zr元素的总的质量分数为0.05%-0.3%,且Mg/Cu的质量比不低于2.8,Fe和Si杂质的质量分数都低于0.3%。合金的平均晶粒大小为30~100μm,具有非常好的热硬化性能。板材的制造方法方法是:铸锭、热轧、冷轧,  相似文献   

8.
日本专利JP2006 22385中公布了一种新型高性能铸造Al合金。该合金的主要成分(质量分数%)是:Si2-4、Mg0.2~0.5、Cu0.4~0.8和Ni0.05-0.3。该合金的拉伸强度不低于300MPa,0.2%屈服强度不低于300MPa,延伸率不低于10%。合金的制造工序是:铸造-在515-54.0℃进行热处理-在165~185℃进行时效处理。该合金适于制造汽车构件。  相似文献   

9.
为研究Mg-13Gd-4Y-2Zn-0.5Zr合金热压缩过程中的动态再结晶规律,在变形温度为350~500℃、应变速率为0.001~1.000 s-1条件下,采用Gleeble3500对合金进行压缩实验,通过XRD和金相显微镜对变形后的合金组织进行分析。结果表明:合金经过均匀化,主要相组成为Mg基体以及析出相W相(Mg3Y2Zn3)、I相(Mg3YZn6)和长程有序相(Mg12YZn),且变形过程中长程有序相保留下来;Mg-13Gd-4Y-2Zn-0.5Zr合金热压缩曲线为典型的动态再结晶型,且峰值应力随应变速率的降低和温度的升高而减小;随着应变速率的增加和温度的升高,动态再结晶由晶界扩展到晶内,且组织成分达到均匀。  相似文献   

10.
新型铝合金     
俄罗斯专利RU2237097中公布了一种可焊接铝合金。该铝合金中各种合金元素的含量范围是(质量分数):Mg4.0%-6.5%、Zr0.04%-0.15%、Sc0.2%-0.3%、Be0.0001%-0.01%、B0.001%-0.01%、Ag0.1%-0.5%,还含有0.01%-0.4%的Y、Ti、Hf或V元素(至少含有其中的两种元素)。该合金热裂倾向低,具有高强度、高延伸率和高抗冲击性能,焊接性能良好,可以用作建筑材料。该合金特别适于作为航空用铝合金和其他工业铝合金产品的焊接填料使用.它可以使铝合金焊接接头的抗裂纹能力、强度、  相似文献   

11.
<正>日本专利JP2006257478中公布了一种日本国家先进工业科技研究院开发的新型耐高温Mg合金及其制造技术。该合金中除Mg外,主要还含有(质量分数):Al1%~12%和Ca0.2%~5.0%,合金中还可以加入0.01%~5.0%的Zn、Mn、Zr、Y或Si元素。该合金的晶界上存在Mg2Ca相。合金的制造方法是将占合金质量分数为0.2%~5.0%的Ca加入Mg熔液中溶解,将熔液加热到988K之上,然后  相似文献   

12.
铸造AI合金     
德国专利DE102,004,053,746中公布的这种铸造AI合金中含有(质量分数):Mg0.1%-0.8%、Si5%-11%、Ag0.05%-5%(最好为0.1%~1.0%)、不超过0.30%的Fe、不超过0.20%的Ti、不超过0.10%的Zn和不超过Fe含量2/3的Mn;合金中每种杂质的含量不超过0.03%,杂质的总含量则不超过0.1%;合金中也可以添加0.2%-0.8%的Cu。合金在砂型或铸模中进行铸造,然后对铸件进行固溶、淬火和退火处理。该铸造AI合金适于用来制造汽车发动机部件,特别是发动机机体、汽缸缸头和曲轴箱等。  相似文献   

13.
世界专利WO200571127中公布了一种美国研究人员开发的可用于制造汽车零部件的铸造铝合金。合金中各种元素含量(质量分数)为:Si6.3%-9%、Mg0.05%-0.4%、Mn≤0.8%、Cu≤0.5%、Zn≤1%、Fe≤0.2%、Ti≤0.2%、Sr≤0.04%。铸造结构件最后采用T5热处理工艺处理(250-350℃处理10-30min)。合金成分(质量分数)为Si6.8%、Mg0.251%、Mn0.577%、Fe0.097%、  相似文献   

14.
<正>美国专利US2008 29187中公布了一种新型2000系列Al-Cu-Mg-Ag-Zn合金。该合金主要成分的质量分数为:Cu 3%~4%,Mg0.4%~1.1%,Ag≤0.8%,Zn≤1%,Zr≤0.25%,Mn≤0.9%,Fe≤0.5%,Si≤0.5%,其余是Al,其中,Cu与Mg的质量比为(3.6~5):1。该合  相似文献   

15.
在热力学计算分析的基础上,用SiO2粉末和纯镁制备Mg-3%Si(质量分数)中间合金,并用光电直读光谱仪测定制备的中间合金Si的含量,表明其含量稳定且可控。用普通重力铸造法制备了Mg-2Y-1Si合金和Mg-3Y-1Si合金,该合金的铸态组织由α-Mg相、(α-Mg+Mg2Si)共晶组织以及在晶内、枝晶间少量分布的点状Mg24Y5相组成。通过对α-Mg晶格常数的计算及通过原子尺寸、电负性、晶体结构的对比,证明Y固溶在基体中形成固溶体。研究表明,Y通过依附在生长界面前沿,有效抑制基体的生长速度,细化基体组织,且随着Y添加量的增加,细化效果更加明显。  相似文献   

16.
铝合金焊丝     
俄罗斯专利RU2265674中公布的铝合金焊丝的成分是(质量分数):Mg5.5%-6.5%、Zr0.002%-0.15%、Se0.1%-0.3%、Be0.0001%-0.005%、B0.001%~0.01%、Mn0.2%~0.4%、Nd0.1%-0。2%,还含有n、Sn或V中的两种以上元素.含量范围是n0.005%~0.15%、Sn0.01%-0.05%、V0.05%-0.15%,焊丝中的其它成分是Al。采用该焊丝焊接Al-Mg、Al-Mg—Li或Al-Zn-Mg—Cu合金时,焊缝具有高的耐热冲击和耐热裂纹性能。  相似文献   

17.
Mg-Sr合金及Mg-Al-Sr合金的微观组织研究与分析   总被引:1,自引:1,他引:0  
Mg-Sr合金的变质效果和Mg-Al-Sr合金的耐热性能均与其组织有紧密关系。采用对渗法的原理,成功制备出Mg-Sr合金和Mg-Al-Sr合金,利用金相光学显微镜、电子扫描电镜、X射线衍射分析仪等先进测试技术对其微观组织进行深入的研究分析。研究结果表明:Mg-Sr合金的组织主要包括树枝状的基体相а-Mg和板条状、针状的共晶组织(а-Mg+Mg17Sr2);Mg-Al-Sr合金的组织则是细小树枝状初生а-Mg相和条状、片状共晶组织,其组成成分包括а-Mg相、共晶化合物Mg17Sr2、Mg12Al17、Al4Sr和Mg-Al-Sr三元化合物,其微观组织形态及共晶组织成分与Sr/Al的比值有关。  相似文献   

18.
<正>世界专利WO2006 40034中介绍了德国Corus轧制铝产品公司开发的新型Al合金焊丝材料。该类焊丝材料中主要含有质量分数为6.0-9.5%的Mg、0.9-2.0%的Mn、0.2-0.9%的Zn、不超过0.3%的Zr(最好0.05-0.25%)和Ti、不超过2.8%的Sc、不超过0.5%的Cu(最好不超过0.25%)、不超过0.5%的Fe、Cr和Si,其余成分是Al。标准焊丝合金成分为(质量分数):Mg 6.1%、Mn 1.15%、Zn0.54%、Zr 0.13%、Ti 0.01%,Cu和Cr的含量都低于0.01%。采用该焊丝材料对Al合金进行焊接后获得的焊缝的力学性能明显要高于采用其它已知焊丝进行焊接后获得的焊缝的性能。  相似文献   

19.
新型AI合金     
美国专利US2006 93512中公布了一种力学性能极佳并且使用温度范围较大的新型AI合金。该合金中含(质量分数):Sc 0.1%-1.9%、Gd2.1%-20%、Zr0.2%-1.9%,也可以添加1%-7%的Mg。该合金可以在-233-+318℃温度区间内使用。该合金由AI固溶基体和具有L12晶体结构的A13X(X为Sc、Gd或Zr)沉淀物弥散相共同发生强化作用。  相似文献   

20.
利用OM、SEM、TEM和电子万能试验机研究Y元素的含量对3种Mg-Y-Zn合金的显微组织和室温及高温力学性能的影响。结果表明,挤压态Mg_(97)Y_2Zn_1和Mg_(96)Y_3Zn_1合金主要由α-Mg基体、沿挤压方向排列的带状18R-LPSO相和α-Mg内的层片状14H-LPSO相组成,而Y含量最高的Mg_(95)Y_4Zn_1合金中还形成Mg_(24)Y_5相颗粒。室温时,随Y含量的增加,合金的抗拉强度逐渐升高,塑性不断下降;随温度的升高,3种合金的抗拉强度均下降,但塑性显著提升。由于合金中起强化作用的LPSO相和Mg_(24)Y_5相热稳定性好,合金在高温时仍保持优异的力学性能,其中Mg_(95)Y_4Zn_1合金在300℃时的抗拉强度为252 MPa,伸长率达到27.1%。总体来看,Mg_(96)Y_3Zn_1合金具有最佳的综合力学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号