首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Fas cell surface receptor belongs to the tumor necrosis factor receptor family and can initiate apoptosis in a variety of cell types. Using the Fas cytoplasmic domain as bait in a yeast two-hybrid screening, we isolated a mouse cDNA encoding a 205-amino-acid protein. Its predicted protein sequence shows 68% identity and 80% similarity with the sequence of recently described human Mort/FADD. This protein, most likely the mouse homolog of human FADD, associates with Fas in vivo only upon the induction of cell death. A fraction of this protein is highly phosphorylated at serine/threonine residues, with both phosphorylated and unphosphorylated forms being capable of binding to FAS. Stable expression of a truncated form of the Mort/FADD protein protects cells from Fas-mediated apoptosis by interfering with the wild-type protein-Fas interaction. Thus, mouse Mort/FADD is an essential downstream component that mediates Fas-induced apoptosis.  相似文献   

2.
The HIV-1 regulatory protein Vpr (96 amino acid residues) is incorporated into the virus particle through a mechanism involving its interaction with the C-terminal portion of Gag. Vpr potentiates virus replication by interrupting cell division in the G2 phase and participates in the nuclear transport of proviral DNA. The domain encompassing the 40 C-terminal residues of Vpr was shown to be involved in cell cycle arrest and binding of nucleocapsid protein NCp7, and suggested to promote nuclear provirus transfer. Accordingly, we show here that the synthetic 52-96 but not 1-51 sequences of Vpr interact with HIV-1 RNA. Based on these results, the structure of (52-96)Vpr was analysed by two-dimensional 1H-NMR in aqueous TFE (30%) solution and refined by restrained molecular dynamics. The structure is characterized by a long (53-78) amphipathic alpha-helix, followed by a less defined (79-96) C-terminal domain. The Leu60 and Leu67 side-chains are located on the hydrophobic side of the helix, suggesting their involvement in Vpr dimerization through a leucine zipper-type mechanism. Accordingly, their replacement by Ala eliminates Vpr dimerization in the two hybrid systems, while mutations of Ile74 and Ile81 have no effect. This was confirmed by gel filtration measurements and circular dichroism, which also showed that the alpha-helix still exists in (52-96)Vpr and its Ala60, Ala67 mutant in the presence and absence of TFE. Based on these results, a model of the coiled-coil Vpr dimer has been described, and its biological relevance as well as that of the structural characteristics of the 52-96 domain for the different functions of Vpr, including HIV-1 RNA binding, are discussed.  相似文献   

3.
4.
Annexins are excellent models for studying the folding mechanisms of multidomain proteins because they have four-eight homologous helical domains with low identity in sequence but high similarity in folding. The structure of an isolated domain 1 of human annexin I has been determined by NMR spectroscopy. The sequential assignments of the 1H, 13C, and 15N resonances of the isolated domain 1 were established by multinuclear, multidimensional NMR spectroscopy. The solution structure of the isolated domain 1 was derived from 1,099 experimental NMR restraints using a hybrid distance geometry-simulated annealing protocol. The root mean square deviation of the ensemble of 20 refined conformers that represent the structure from the mean coordinate set derived from them was 0. 57 +/- 0.14 A and 1.11 +/- 0.19 A for the backbone atoms and all heavy atoms, respectively. The NMR structure of the isolated domain 1 could be superimposed with a root mean square deviation of 1.36 A for all backbone atoms with the corresponding part of the crystal structure of a truncated human annexin I containing all four domains, indicating that the structure of the isolated domain 1 is highly similar to that when it folded together with the other three domains. The result suggests that in contrast to isolated domain 2, which is largely unfolded in solution, isolated domain 1 constitutes an autonomous folding unit and interdomain interactions may play critical roles in the folding of annexin I.  相似文献   

5.
Guanine nucleotide exchange factors in the Dbl family activate Rho GTPases by accelerating dissociation of bound GDP, promoting acquisition of the GTP-bound state. Dbl proteins possess a approximately 200 residue catalytic Dbl-homology (DH) domain, that is arranged in tandem with a C-terminal pleckstrin homology (PH) domain in nearly all cases. Here we report the solution structure of the DH domain of human PAK-interacting exchange protein (betaPIX). The domain is composed of 11 alpha-helices that form a flattened, elongated bundle. The structure explains a large body of mutagenesis data, which, along with sequence comparisons, identify the GTPase interaction site as a surface formed by three conserved helices near the center of one face of the domain. Proximity of the site to the DH C-terminus suggests a means by which PH-ligand interactions may be coupled to DH-GTPase interactions to regulate signaling through the Dbl proteins in vivo.  相似文献   

6.
7.
The solution structure of the Eps15 homology (EH) domain of a human POB1 (partner of RaIBP1) has been determined by uniform 13C/15N labeling and heteronuclear multidimensional nuclear magnetic resonance spectroscopy. The POB1 EH domain consists of two EF-hand structures, and the second one binds a calcium ion. In the calcium-bound state, the orientation of the fourth alpha-helix relative to the other helices of the POB1 EH domain is slightly different from that of calbindin, and much more different from those of calmodulin and troponin C, on the basis of their atomic coordinates.  相似文献   

8.
Fas (Apo-1, CD95), a member of the TNFR family, is expressed on a variety of cell types and transduces an apoptotic signal. Since Fas does not possess known enzymatic activities, proteins that interact with the cytoplasmic domain of Fas regulate the death signal. Several proteins have been identified, primarily using the yeast two-hybrid system, that associate with the death domain of Fas. One of these proteins, FADD/MORT1, can be phosphorylated, although the kinase that is responsible has not been identified. Furthermore, direct signaling connections between Fas and its known activation of sphingomyelinase or NF-kappaB have not been made, suggesting that other proteins may associate with Fas. In this study, a series of glutathione S-transferase fusion proteins was constructed that contained the cytoplasmic domain of murine Fas. These proteins were used to search for additional proteins that associate with Fas. Novel proteins, including kinases, were identified that associated specifically with the membrane-proximal, cytoplasmic tail of Fas but not with the death domain. One of these kinases phosphorylates FADD/MORT1. Moreover, the membrane-proximal region of Fas itself was phosphorylated by one of the associating kinases. These findings suggest that, similar to the Fas-related p55 TNFR, the membrane-proximal region of Fas likely participates in signaling.  相似文献   

9.
Scanning mutagenesis of transmembrane domain 3 of the M1 muscarinic acetylcholine receptor has revealed a highly-differentiated alpha-helical structure. Lipid-facing residues are distinguished from a patch of residues which selectively stabilise the ground state of the receptor, and from a band of amino acids extending the full length of the helix, which contribute to the active agonist-receptor-G protein complex. The most important residues are strongly conserved in the GPCR superfamily.  相似文献   

10.
ADP-ribosylation factors (ARFs) are approximately 20-kDa guanine nucleotide-binding proteins recognized as critical components in intracellular vesicular transport and phospholipase D activation. Both guanine nucleotide-exchange proteins and GTPase-activating proteins (GAPs) for ARFs have been cloned recently. A zinc finger motif near the amino terminus of the ARF1 GAP was required for stimulation of GTP hydrolysis. ARD1 is an ARF family member that differs from other ARFs by the presence of a 46-kDa amino-terminal extension. We had reported that the ARF domain of ARD1 binds specifically GDP and GTP and that the amino-terminal extension acts as a GAP for the ARF domain of ARD1 but not for ARF proteins. The GAP domain of ARD1, synthesized in Escherichia coli, stimulated hydrolysis of GTP bound to the ARF domain of ARD1. Using ARD1 truncations, it appears that amino acids 101-190 are critical for GAP activity, whereas residues 190-333 are involved in physical interaction between the two domains of ARD1 and are required for GTP hydrolysis. The GAP function of the amino-terminal extension of ARD1 required two arginines, an intact zinc finger motif, and a group of residues which resembles a sequence present in Rho/Rac GAPs. Interaction between the two domains of ARD1 required two negatively charged residues (Asp427 and Glu428) located in the effector region of the ARF domain and two basic amino acids (Arg249 and Lys250) found in the amino-terminal extension. The GAP domain of ARD1 thus is similar to ARF GAPs but differs from other GAPs in its covalent association with the GTP-binding domain.  相似文献   

11.
15N-Labeled de-(232-248)-bacteriorhodopsin [BR(1-231)] was solubilized in 1:1 chloroform-methanol solvent mixture that contained 1.0 M 2HCO2N2H4 and mimic membrane medium. Resonances in the 1H-15N heteronuclear multiple-quantum coherence (HMQC) spectrum of BR (1-231) were assigned using the data of two- and three-dimensional NMR experiments. Of 117 cross-peaks present in the 1H-15N HMQC spectrum, 98 were assigned to residues in 1-75 and 193-231 segments of the protein. Almost all cross-peaks that correspond to the 76-192 segment were absent in the HMQC spectrum (except for six cross-peaks from the side chains and 14 cross-peaks from the backbone). Deuterium exchange rates of amide protons and cross-peaks of nuclear Overhauser effect helped to localize helices A (residues 8-30), B (residues 40-65), and G (residues 198-226). The periodicity in the rates of deuterium exchange of NH protons of helices A, B, and G was explained by the compact arrangement of these helices in the protein globule. The broadening of signals from six residues in helix G, which, according to the electron cryomicroscopy model of bacteriorhodopsin, is in contact with the NMR-unobservable bundle of helices CDEF, indicates specific interactions of the helices in BR(1-231). These data suggest that BR(1-231) solubilized in an organic medium has a spatial structure similar to that in the electron cryomicroscopy model of BR.  相似文献   

12.
The solution structure of the peptide antigen from the receptor binding domain of Pseudomonas aeruginosa strain P1 has been determined using two-dimensional 1H NMR techniques. Ensembles of solution conformations for the trans form of this 23-residue disulfide bridged peptide have been generated using a simulated annealing procedure in conjunction with distance and torsion angle restraints derived from NMR data. Comparison of the NMR-derived solution structures of the P1 peptide with those previously determined for the 17-residue PAK, PAO and KB7 strain peptides [McInnes, C., et al. (1993) Biochemistry 32, 13432-13440; Campbell, A.P., et al. (1995) Biochemistry 34, 16255-16268] reveals the common structural motif of a beta-turn, which may be the necessary structural requirement for recognition of a common cell surface receptor and a common cross-reactive antibody to which all four strains bind. The importance of this conserved beta-turn in the PAK, PAO, KB7 and P1 peptides is discussed with regard to the design of a synthetic peptide vaccine effective against multiple strains of Pseudomonas aeruginosa infections.  相似文献   

13.
We report a patient who developed significant liver dysfunction following therapy with terbinafine. At the end of a 3 1/2-wk course of terbinafine, he developed progressive jaundice and pruritus. His serum bilirubin peaked at 30.9 mg/dl 3 wk after discontinuing terbinafine. A liver biopsy revealed mild to moderate mixed cellular infiltrate in the portal tracts, and hepatocellular and canicular cholestasis. His liver tests normalized 100 days after stopping terbinafine.  相似文献   

14.
Poly(ADP-ribose) polymerase (PARP) is a multifunctional nuclear zinc finger protein which participates in the immediate response of mammalian cells exposed to DNA damaging agents. Given the complexity of the poly(ADP-ribosylation) reaction, we developed a large-scale screening procedure in Escherichia coli to identify randomly amino acids involved in the various aspects of this mechanism. Random mutations were generated by the polymerase chain reaction in a cDNA sequence covering most of the catalytic domain. Out of 26 individual mutations that diversely inactivated the full-length PARP, 22 were found at conserved positions in the primary structure, and 24 were located in the core domain formed by two beta-sheets containing the active site. Most of the PARP mutants were altered in poly(ADP-ribose) elongation and/or branching. The spatial proximity of some residues involved in chain elongation (E988) and branching (Y986) suggests a proximity or a superposition of these two catalytic sites. Other residues affected in branching were located at the surface of the molecule (R847, E923, G972), indicating that protein-protein contacts are necessary for optimal polymer branching. This screening procedure provides a simple and efficient method to explore further the structure-function relationship of the enzyme.  相似文献   

15.
16.
A case of adult onset myopathy who showed a peculiar sleep-related respiratory disorder (SRRD) is reported. She recovered from respiratory failure after tracheostomy and/or with the aid of the respirator used only during the night. Sleep study without the use of respirator revealed that her sleep was highly fragmented by frequent arousal responses due to inspiratory effort but not by apnea or hypopnea. To our knowledge this type of SRRD has not been described.  相似文献   

17.
Classical protein kinase C (PKC) family members are activated by the binding of various ligands to one of several cysteine-rich domains of the enzyme. The natural agonist, diacylglycerol (DAG), and the natural product superagonist, phorbol dibutyrate (PDB), activate the enzyme to produce wide-ranging physiological effects. The second cysteine-rich (Cys2) domain of rat brain PKC-gamma was expressed and labeled with 15N and 13C, and the solution structure was determined to high resolution using multidimensional heteronuclear NMR methods. The phorbol binding site was identified by titrating this domain with phorbol-12,13-dibutyrate (PDB) in the presence of organic cosolvents. Titrations of this domain with lipid micelles, in the absence and presence of phorbols, indicate selective broadening of some resonances. The observed behavior indicates conformational exchange between bound and free states upon protein-micelle interaction. The data also suggest that half of the domain, including the phorbol site and one of the zinc sites, is capable of inserting into membranes.  相似文献   

18.
19.
The final step in the biosynthesis of the plant signaling molecule ethylene is catalyzed by 1-aminocyclopropane-1-carboxylate (ACC) oxidase, a member of the non-heme iron(II) dependent family of oxygenases and oxidases, which has a requirement for ascorbate as a co-substrate and carbon dioxide as an activator. ACC oxidase (tomato) has a particularly short half-life under catalytic conditions undergoing metal-catalyzed oxidative (MCO) fragmentation. Sequence comparisons of ACC oxidases with isopenicillin N synthase (IPNS) and members of the 2-oxoglutarate Fe(II) dependent dioxygenases show an aspartate and two of six ACC oxidase conserved histidine residues are completely conserved throughout this subfamily of Fe(II) dependent oxygenases/oxidases. Previous mutagenesis, spectroscopic, and crystallographic studies on IPNS indicate that the two completely conserved histidine and aspartate residues act as Fe(II) ligands. To investigate the role of the conserved aspartate and histidine residues in ACC oxidase (tomato fruit), they were substituted via site-directed mutagenesis. Modified ACC oxidases produced were H39Q, H56Q, H94Q, H177Q, H177D, H177E, D179E, D179N, H177D&D179E, H211Q, H234Q, H234D, and H234E. Among those histidine mutants replaced by glutamine, H39Q, H56Q, H94Q, and H211Q were catalytically active, indicating these histidines are not essential for catalysis. Mutant enzymes H177D, H177Q, D179N, H177D&D179E, H234Q, H234D, and H234E were catalytically inactive consistent with the assignment of H177, D179, and H234 as iron ligands. Replacement of H177 with glutamate or D179 with glutamate resulted in modified ACC oxidases which still effected the conversion of ACC to ethylene, albeit at a very low level of activity, which was stimulated by bicarbonate. The H177D (inactive), H177E (low activity), D179E (low activity), and H234Q (inactive) modified ACC oxidases all underwent MCO fragmentation, indicating that they can bind iron, dioxygen, ACC, and ascorbate. The results suggest that MCO cleavage results from active site-mediated reactions and imply that, while H177, D179, and H234 are all involved in metal ligation during catalysis, ligation to H234 is not required for fragmentation. It is possible that MCO fragmentation results from reaction of incorrectly folded or "primed" ACC oxidase.  相似文献   

20.
The flavin-containing monooxygenases (FMOs) are a family of flavoenzymes and contain one molecule of FAD per monomer. In order to demonstrate where FMO interacts with FAD, four mutants for the rat liver FMO1 protein were expressed in yeast and characterized. All four mutants were immunochemically similar to the unmodified form, although the contents of FAD in all four mutants were much lower than that in the unmodified form. Interestingly, the mutant generated by changing the first glycine of the proposed FAD-binding domain (GxGxxG) to alanine revealed catalytic activities, but was lower than those seen with the unmodified form. The conversion of the first glycine to alanine markedly increased and decreased the Km and Vmax values for imipramine N-oxidation, respectively. The other three mutants (RFMOm2, RFMOm3, and RFMOm4) were catalytically inactive. Our results suggest that three glycines, especially the second and third glycines, in the proposed FAD-binding domain were necessary for FMO to show catalytic activities. Using RFMOm1 and the unmodified form, the effects of n-octylamine on the activity of FMO1 were investigated. The activities of both wild-type and RFMOm1 enzymes for all of the compounds examined were enhanced by n-octylamine. The Km and Vmax values of both RFMOm1 and the unmodified form for imipramine N-oxidation were lowered and raised by n-octylamine, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号