首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An anaerobic/aerobic/anoxic/aerobic sequencing batch reactor (SBR) was operated with municipal wastewater to investigate the effect of nitrite on biological phosphorus removal (BPR). When nitrite accumulated, aerobic phosphate uptake activity significantly decreased and, in case of hard exposure to nitrite, BPR severely deteriorated. The interesting observation was that the relative anoxic activity of phosphate accumulating organisms (PAOs) increased after nitrite exposure. Moreover batch tests of aerobic phosphate uptake in the presence/absence of nitrite indicated that PAOs with the higher relative anoxic activity are less sensitive to nitrite exposure. From these results, we concluded that BPR is sensitive to nitrite exposure, but BPR containing PAOs with the higher relative anoxic activity is possibly more stable against nitrite than BPR containing PAOs with the lower relative anoxic activity.  相似文献   

2.
Nitrate removal under aerobic conditions was investigated using pure cultures of Paracoccus pantotrophus, which is a well-known aerobic-denitrifying (AD) bacterium. When a high concentration of cultures with a high carbon/nitrogen (C/N) ratio was preserved at the beginning of batch experiments, subsequently added nitrate was completely removed. When continuous culturing was perpetuated, a high nitrate removal rate (66.5%) was observed on day 4 post-culture, although gradual decreases in AD ability with time were observed. The attenuation in AD ability was probably caused by carbon limitation, because when carbon concentration of inflow water was doubled, nitrate removal efficiency improved from 18.1% to 59.6%. Bacterial community analysis using the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) method showed that P. pantotrophus disappeared in the suspended medium on day 8 post-culture, whereas other bacterial communities dominated by Acidovorax sp. appeared. Interestingly, this replaced bacterial community also showed AD ability. As P. pantotrophus was detected as attached colonies around the membrane and bottom of the reactor, this bacterium can therefore be introduced in a fixed form for treatment of wastewater containing nitrate with a high C/N ratio.  相似文献   

3.
The effects of sequentially combined carbon (SCC) using a symbiotic relationship of methanol and acetic acid on biological nutrient removal were investigated in both the continuous bench scale process consisting of an anoxic, an aerobic and a final settling tank and intensive batch tests. Compared to the use of respective sole carbon sources, methanol and acetic acid, the use of SCC showed superior removal efficiency of nitrogen (98.3%) and phosphorus (approximately 100%). Furthermore, the use of SCC enhanced simultaneous denitrification and phosphorus uptake by denitrifying phosphorus removal bacteria (DPB), resulting in the highest specific denitrification rate (SDNR) of 0.252 g NO3-N/g VSS/d achieved from the first anoxic zone with methanol of 30 mg COD/I. From batch tests performed under carbon limited anoxic conditions, 1 g of nitrate was used by DPB for P-uptake of 1.19 g. According to this result, 0.205 g NO3-N/g VSS/d was accomplished by normal denitrifiers using methanol, and 0.047 g NO3-N/g VSS/d was achieved by DPB. This research also demonstrated that the increase of poly-beta-hydroxybutyrate (PHB) stored by phosphorus accumulating organisms (PAOs) could be of importance in improving aerobic denitrification. The use of SCC produced the highest P-release in the anoxic zone, indicating the amount of PHB would be higher compared to the use of other sole carbons. Therefore, the SCC could be a very effective carbon source for the enhancement of aerobic denitrification as well.  相似文献   

4.
The sequentially combined carbon (SCC) of methanol and acetic acid was used for the biological nutrient removal (BNR). Its BNR performance was compared with methanol or acetic acid as a sole carbon substrate. Compared to the sole carbon substrate, the use of SCC demonstrated the highest overall TIN removal of 98.3% at a COD ratio of 30 mg COD/l of methanol/50 mg CDO/l of acetic acid. Furthermore, denitrification was more enhanced when methanol was used as one of the SCC, rather than as a sole carbon source. Complete phosphorus removal was accomplished with a non-detectable o-P concentration when SCC was added. This research also showed that aerobic denitrifiers appear to prefer acetic acid to methanol, and the amount of poly-beta-hydroxybutyrate (PHB) stored by P accumulating organisms (PAOs) using acetic acid in the anoxic zone could be another important factor in improving the aerobic denitrification. The SCC was a very favorable carbon source for the aerobic denitrification since acetic acid was utilized more efficiently for P-release in accordance with increase of PHB stored in the cell of PAOs by removing nitrogen first using methanol.  相似文献   

5.
Pilot scale experiments were performed to evaluate the potential of nitrite type nitrification process with an airlift reactor and granular biomass. Initially, oxygen limitation was used as the main control parameter for accumulating nitrite in the effluent. After 30 d operation, the maximum nitrite conversion rate reached 2.5 kgNO2-N m(-3) d(-1), average diameter of the granule was 0.7 mm. Nitrite type reaction continued over 100 d, but nitrate formation increased after 150 d of operation. Once nitrate formation increased, oxygen limitation could not eliminate nitrite oxidising bacteria from granule. To overcome nitrate formation, laboratory scale batch experiments were conducted and it revealed a high concentration of inorganic carbon which had a significant effect on nitrite accumulation. Following this new concept, inorganic carbon was fed to the pilot scale reactor by changing pH adjustment reagent from NaOH to Na2CO3 and nitrite accumulation was recovered successfully without changing DO concentration. These results show that a high concentration of inorganic carbon is one of the control parameters for accumulating nitrite in biofilm nitrification system.  相似文献   

6.
Physical, chemical and biological characteristics were investigated for aerobic granules and sludge flocs from three laboratory-scale sequencing batch reactors (SBRs). One reactor was operated as normal SBR (N-SBR) and two reactors were operated as granular SBRs (G-SBR1 and G-SBR2). G-SBR1 was inoculated with activated sludge and G-SBR2 with granules from the municipal wastewater plant in Garching (Germany). The following major parameters and functions were measured and compared between the three reactors: morphology, settling velocity, specific gravity (SG), sludge volume index (SVI), specific oxygen uptake rate (SOUR), distribution of the volume fraction of extracellular polymeric substances (EPS) and bacteria, organic carbon and nitrogen removal. Compared with sludge flocs, granular sludge had excellent settling properties, good solid-liquid separation, high biomass concentration, simultaneous nitrification and denitrification. Aerobic granular sludge does not have a higher microbial activity and there are some problems including higher effluent suspended solids, lower ratio of VSS/SS and no nitrification at the beginning of cultivation. Measurement with CLSM and additional image analysis showed that EPS glycoconjugates build one main fraction inside the granules. The aerobic granules from G-SBR1 prove to be heavier, smaller and have a higher microbial activity compared with G-SBR2. Furthermore, the granules were more compact, with lower SVI and less filamentous bacteria.  相似文献   

7.
The effects of total organic carbon and biofilm on microbial corrosion were quantified using serum bottles in a 2 x 2 factorial design. Both organic carbon and biofilm bacteria had a significant effect on the iron corrosion rate, irrespective of the levels of the other variable (p = 0.05). There was no evidence of interaction between organic carbon and biofilm bacteria. Within the tested levels, the addition of exogenous organic carbon increased the corrosion rate by an average of 3.838 mg dm(-2) day(-1) (mdd), but the presence of biofilm bacteria decreased the rate by an average of 2.305 mdd. More iron was released from the coupon in response to organic carbon. Powder x-ray diffractometry indicated that the scales deposited on the corroded iron surface consisted primarily of lepidocrocite (gamma-FeOOH), magnetite (Fe3O4) and hematite (alpha-Fe203). Corrosion rates by different organic carbon sources, i.e. acetate, glucose and humic substances, were compared using an annular biofilm reactor. One-way ANOVA suggested that the effect of each carbon source on corrosion was not the same, with the iron corrosion rate highest for glucose, followed by acetate, humic substances and the control. Magnetite was a major constituent of the corrosion products scraped from iron slides. Examination of community-level physiological profile patterns on the biofilms indicated that acetate was a carbon source that could promote the metabolic and functional potentials of biofilm communities.  相似文献   

8.
The effect of added carbon source and nitrate concentration on the denitrifying phosphorus removal by denitrifying phosphorus removal bacteria sludge was systematically studied using batch experiments, at the same time the variation of ORP was investigated. Results showed that the denitrifying and phosphorus uptake rate in the anoxic phase increased with the high initial anaerobic carbon source addition. However, once the initial COD concentration reached a certain level, which was in excess of the PHB saturation of Poly-p bacteria, residual COD carried over to the anoxic phase inhibited the subsequent denitrifying phosphorus uptake. This was equal to supplementing the external carbon source to the anoxic phase, furthermore the higher the external carbon source concentration the more powerful the inhibition caused. High nitrate concentration in the anoxic phase increased the initial denitrifying phosphorus rate. Oncethe nitrate was exhausted, phosphate uptake changed to phosphate release. Moreover, the time of this turning point occurred later with the higher nitrate addition. On the other hand, through on-line monitoring the variation of the ORP with different initial COD concentration, it was found that ORP could be used as a control parameter for phosphorus release, but it is impossible to utilize ORP for controlling the dinitrification and anoxic phosphorus uptake operations.  相似文献   

9.
An application of hydrothermal reaction was investigated to reuse excess sludge as carbon sources for enhancement of biological phosphorus removal. Under the tested conditions, solubilization of treated excess sludge did not present much variation, sustaining around 65%, except the results obtained at 400 degrees C. Biodegradability of excess sludge was improved through its content change by the reaction, without much reduction of carbon contents even in 7 min. From the results of respirometric test, readily biodegradable substrate was found at 300 degrees C. Then its portion of reaction products increased with increasing reaction temperature. In the readily biodegradable substrate, acetic and propionic acid, which are useful carbon sources for phosphorus accumulating microorganism under anaerobic condition, increased with increasing reaction temperature. Hydrothermal reaction might be accepted as suitable pretreatment method to treat excess sludge prior to biological treatment process. This technology also secures excess sludge reuse, enhancing biological phosphorus removal and improvement of biological treatment process.  相似文献   

10.
The European Drinking Water Directive defines reference methods for the enumeration of microbiological parameters in drinking water. The method to be used for Escherichia coli and coliforms is the membrane filtration technique on Lactose TTC agar with Tergitol 7. Many technical drawbacks of the procedure, as well as its limitations regarding the recent taxonomy of coliforms, make it necessary to evaluate alternative methods. Two alternative assays, a chromogenic media (m-ColiBlu24) and a defined substrate technology-DST test (Colilert 18/Quanty Tray) were compared with the ISO standard with attention to the phenotypic characteristic of the isolates. Results showed that the ISO method failed to detect an important percentage of coliforms and E. coli while m-ColiBlu24 and Colilert 18 provided results in a shorter time allowing the simultaneous detection of E. coli and coliforms with no further confirmation steps.  相似文献   

11.
It is often assumed that planted wastewater treatment systems outperform unplanted ones, mainly because plants stimulate belowground microbial population. Yet, fundamental interactions between plants and associated microorganisms remain only partly understood. The aim of our project was to evaluate microbial density and activity associated to the rhizosphere of three plant species. Experimental set-up, in six replicates, consisted of four 1.8-L microcosms respectively planted in monoculture of Typha angustifolia, Phragmites australis, Phalaris arundinacea and unplanted control. Plants were grown for two months with 25 L m(-2) d(-1) of secondary effluent (in g m(-2) d(-1): 1.3 TSS, 7.5 COD, 1.0 TKN). Sampling of substrate, roots and interstitial water was made according to depth (0-10, 10-20 cm). Biofilm was extracted with 500 mL of a buffer solution. Microbial density was directly estimated by flow cytometry and indirectly by protein measurements. Biological activity was determined using respirometry assays, dehydrogenase and enzymatic activity measurements. Our results show that microbial density and activity are higher in the presence of plants, with significantly higher values associated with Phalaris arundinacea. Greater density of aerobic or facultative bacteria was present in planted microcosm, particularly on root surface, suggesting root oxygen release. Microbes were present on substrate and roots as an attached biofilm and abundance was correlated to root surface throughout depth. Plant species root morphology and development seem to be a key factor influencing microbial-plant interaction.  相似文献   

12.
It has been demonstrated that the combination of anaerobic-aerobic treatment is the best technological and economical solution for the treatment of high loaded wastewater. Where in the past aerobic treatment systems were still very acceptable due to the very good treatment efficiency, simplicity and robustness of the technology, this has, in most cases, been changed due to very stringent sludge disposal legislation. The anaerobic pretreatment takes care of approximately 80-90% of the overall treatment efficiency at high loading rates and low sludge production and low energy costs. The aerobic posttreatment takes care of the absolute high removal efficiency and nitrogen and phosphorus removal. Because of the low organic loading rate of the aerobic posttreatment also in this stage the sludge production is low. The combination of anaerobic-aerobic treatment results in a compact system capable of reaching high treatment efficiency at low sludge production and lower energy consumption. Waterleau Global Water Technology has developed LUCAS anaerobic-aerobic system that combines an Upflow Anaerobic Sludge Blanket (UASB) reactor with an aerobic, constant-level cyclic activated sludge system, which is very suitable for the treatment of high loaded wastewaters in general and brewery waste water in particular. It has been proven from several full scale upgrading projects that the UASB system is best suitable for implementation in the aerobic plants that have to be extended in capacity.  相似文献   

13.
One of the largest wastewater treatment plants in the Paris conurbation (240,000 m(3)/d) has been studied over several years in order to provide technical and economical information about biological treatment by biofiltration. Biofiltration systems are processes in which carbon and nitrogen pollution of wastewater are treated by ascendant flow through immersed fixed cultures. This paper, focused on technical information, aims: (1) to compare performances of the three biological treatment layouts currently used in biofiltration systems: upstream denitrification (UD), downstream denitrification (DD) and combined upstream-downstream denitrification (U-DD) layouts; and (2) to describe in detail each treatment step. Our study has shown that more than 90% of the carbon and ammoniacal pollution is removed during biological treatment, whatever the layout used. Nitrate, produced during nitrification, is then reduced to atmospheric nitrogen. This reduction is more extensive when the denitrification stage occurs downstream from the treatment (DD layout with methanol addition), whereas it is only partial when it is inserted upstream from the treatment (UD layout - use of endogenous carbonaceous substrate). So, the UD layout leads to a nitrate concentration that exceeds the regulatory threshold in the effluent, and the treatment must be supplemented with a post-denitrification step (U-DD layout). Our work has also shown that the optimal ammonium-loading rate is about 1.1-1.2 kg N-NH(4)(+) per m(3) media (polystyrene) and day. For denitrification, the optimal nitrate-loading rate is about 2.5 kg N per m(3) media (expanded clay) and day in the case of DD with methanol, and is about 0.25 kg N-NO(3)(-) per m(3) media and day in the case of UD with exogenous carbonaceous substrate.  相似文献   

14.
This paper presents the behaviour of a full-scale expanded bed reactor (160 m3) with overlaid anaerobic and aerobic zones used for municipal wastewater treatment. The research was carried out in two experimental steps: anaerobic and anaerobic-aerobic conditions, and the experimental results presented in this paper refer to four months of reactor operation. In the anaerobic condition, after inoculation and 60 days of operation, the reactor treating 3.40 kg CODm(-3)d(-1) for thetaH of 2.69 h, reached mean removal efficiencies of 76% for BOD, 72% for COD, and 80% for TSS, when the effluent presented mean values of 225 mg.L(-1) of COD, 98 mg.L(-1) of BOD and 35 mg.L(-1) of TSS. Under these conditions, for nitrogen loading of 0.27 kgN.m(-3)d(-1), the reactor generated an effluent with mean N-org. of 8 mg.L(-1) and N-ammon. of 37 mg.L(-1), demonstrating high potential of ammonification. For the anaerobic-aerobic condition (118th day) the system was operated with thetaH of 5.38 h presented mean removal efficiencies of 84% for BOD, 79% for COD, 76% for TSS, and 30% for TKN. The reactor's operation time was less than two months, which was not long enough to reach nitrification. Regarding the obtained results, this research confirmed that this reactor is configured as a flexible and adequate alternative for the treatment of sewage, requiring relatively small area and only thetaH of 10 h that can be adjusted to the local circumstances.  相似文献   

15.
The degradation of wine distillery wastewaters by aerobic biological treatment has been investigated in a batch reactor. The evolution of the chemical oxygen demand, biomass and total contents of polyphenolic and aromatic compounds was followed through each experiment. According to the Contois model, a kinetic expression for the substrate utilization rate is derived, and its biokinetic constant is evaluated. The final effluents of the aerobic biological experiments were oxidized by Fenton's reagent. The evolution of chemical oxygen demand, hydrogen peroxide concentration and total contents of polyphenolic and aromatic compounds was followed through each experiment. A kinetic model to interpret the experimental data is proposed. The kinetic rate constant of the global reaction is determined.  相似文献   

16.
Stormwater quality simulation models are useful tools for the design and management of sewer systems. Modelling results are highly sensitive to experimental data used for calibration. This sensitivity is examined for three modelling approaches of various complexities (site mean concentration approach, event mean concentration approach and build-up, washoff and transport modelling approach) applied to a typical case study (design of a dry detention tank), accounting for the variability of calibration data and their effect on simulation results. Calibrated models with different calibration data sets were used to simulate 3 years of rainfall with different retention tank specific volumes. Annual pollutant load interception efficiencies were determined. Simulations results revealed (i) that there is no advantage in using the EMC model compared to the SMC model and (ii) that the BWT model resulted in higher design ratios than those given by the SMC/hydraulic approach. For both EMC and BWT models, using an increasing number n of events for calibration leads to narrower confidence intervals for the design ratios. It is crucial for design ratios to account for successive storm events in chronological order and to account for the maximum allowable flow to be transferred to the downstream WWTP.  相似文献   

17.
Parallel experimental tests to measure mixed liquor filterability for submerged membrane bioreactors were conducted over a six month period using three ZW-500 pilot plants and a ZW-10 lab-scale filterability apparatus. Non-air sparged conditions during the tests yielded operation behaviour that was equivalent to dead-end filtration. The fouling resistance increased linearly with the intercepted mass until a critical point was reached at which point significant cake compression was induced and the resistance began to increase exponentially. Although the point of cake compression appears to be dependent on the membrane module design, similar resistance per unit solid mass intercepted per unit area (R(mass)) values were observed when the same mixed liquor was filtered. Coupled with the established correlation between the R(mass) and the critical flux, it is suggested that the filterability test results from a side-stream, lab-scale module may be used to predict fouling potential in a full scale MBR wastewater treatment system without interrupting the full-scale MBR operation.  相似文献   

18.
The objective of this article is to test the efficiency of three different Storm Water Quality Model (SWQM) on the same data set (34 rain events, SS measurements) sampled on a 42 ha watershed in the center of Paris. The models have been calibrated at the scale of the rain event. Considering the mass of pollution calculated per event, the results on the models are satisfactory but that they are in the same order of magnitude as the simple hydraulic approach associated to a constant concentration. In a second time, the mass of pollutant at the outlet of the catchment at the global scale of the 34 events has been calculated. This approach shows that the simple hydraulic calculations gives better results than SWQM. Finally, the pollutographs are analysed, showing that storm water quality models are interesting tools to represent the shape of the pollutographs, and the dynamics of the phenomenon which can be useful in some projects for managers.  相似文献   

19.
A new anaerobic-oxic biological filter reactor, which was packed with carbon fibre and aerated with micro-bubbles, was proposed. The reactor performance was examined using dye works wastewater compared with the activated sludge reactor. Effluent SS from the experimental reactor was significantly lower than that from the activated sludge reactor, and transparency was higher. Temperatures of the activated sludge reactor were over 35 degrees C and DOC removal ratios were 40-80% depending on the influent wastewater. On the other hand, the DOC removal efficiency of the experimental reactor was over 70%, when the reactor temperature was over 22 degrees C. In the anaerobic zone, sulphate reduction occurred predominantly and acetate was produced. In the oxic reactor, sulphur oxidation and organic removal occurred. When the amount of sulphate reduction in the anaerobic zone increased, DOC and colour in effluent decreased. The sulphate reducing activity of biofilm at 30 degrees C was three times higher than those at 20 degrees C. The sulphate reducing activity of biofilm in the oxic zone was higher than those in the anaerobic zone, meaning that the sulphate reduction-oxidation cycles were established in the biofilm of the oxic zone. Microbial community of sulphate reducing bacteria was examined by in situ hybridisation with 16S rRNA targeted oligonucleotide probes. Desulfobulbus spp. was most common sulphate reducing bacteria in the anaerobic zone. In the oxic zone, Desulfobulbus spp. and Desulfococcus spp. were observed.  相似文献   

20.
For swimming pools, it is generally agreed that free chlorine levels have to be maintained to guarantee adequate disinfection. Recommended free chlorine levels can vary between 0.3 and 0.6 mg/L in Germany and up to 3 mg/L in other countries. Bathers introduce considerable amounts of organic matter, mainly in the form of such as urine and sweat, into the pool water. As a consequence, disinfection byproducts (DBPs) are formed. Regulations in Germany recommend levels of combined chlorine of less than 0.2 mg/L and levels of trihalomethanes (THMs) of less than 20 microg/L. Haloacetic acids (HAAs), haloacetonitriles (HANs), chloropicrin and chloral hydrate are also detected in considerable amounts. However, these compounds are not regulated yet. Swimming pool staff and swimmers, especially athletes, are primarily exposed to these byproducts by inhalation and/or dermal uptake. In Germany, new regulations for swimming pool water treatment generally require the use of activated carbon. In this project, three different types of granular activated carbon (GAC) (one standard GAC, two catalytic GACs) are compared for their long time behaviour in pool water treatment. In a pilot plant operated with real swimming pool water, production and removal of disinfection byproducts (THMs, HAAs, AOXs), of biodegradable substances (AOC), of bacteria (Pseudomonas aeruginosa, Legionella, coliforms, HPC) as well as the removal of chlorine and chloramines are monitored as function of GAC bed depth. Combined chlorine penetrates deeper in the filter bed than free chlorine does. However, both, free and combined chlorine removal efficiencies decrease over the time of filter operation. The decreases of removal efficiencies are also observed for parameters such as dissolved organic carbon, spectral absorption coefficient, adsorbable organic carbon and most of the disinfection byproducts. However, THMs, especially chloroform are produced in the filter bed. The GAC beds were contaminated microbially, especially with P. aeruginosa. The contamination was not removable by backwashing with chlorine concentrations up to 2 mg/l free chlorine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号