首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A 1.8-V embedded 18-Mb DRAM macro with a 9-ns row-address-strobe access time and memory-cell area efficiency of 33% has been successfully developed with a single-side interface architecture, high-speed circuit design, and low-voltage design. In the high-speed circuit design, a multiword redundancy scheme and Y-select merged sense scheme are developed to achieve the performance goal. In the low-voltage design, a dual-complement charge-pump scheme and a decoupling capacitor utilizing a tantalum-oxide capacitor are developed to retain high performance at low supply voltage  相似文献   

2.
256-Mb DRAM circuit technologies characterized by low power and high fabrication yield for file applications are described. The newly proposed and developed circuits are a self-reverse-biasing circuit for word drivers and decoders to suppress the subthreshold current to 3% of the conventional scheme, and a subarray-replacement redundancy technique that doubles chip yield and consequently reduces manufacturing costs. An experimental 256-Mb DRAM has been designed and fabricated by combining the proposed circuit techniques and a 0.25-μm phase-shift optical lithography, and its basic operations are verified. A 0.72-μm2 double-cylindrical recessed stacked-capacitor (RSTC) cell is used to ensure a storage capacitance of 25 fF/cell. A typical access time under a 2-V power supply voltage was 70 ns. With the proper device characteristics, the simulated performances of the 256-Mb DRAM operating with a 1.5-V power supply voltage are a data-retention current of 53 μA and an access time of 48 ns  相似文献   

3.
Approaches to extra low voltage DRAM operation by SOI-DRAM   总被引:1,自引:0,他引:1  
The newly designed scheme for a low-voltage 16 MDRAM/SOI has been successfully realized and the functional DRAM operation has been obtained at very low supply voltage below 1 V. The key process and circuit technologies for low-voltage/high-speed SOI-DRAM will be described here. The extra low voltage DRAM technologies are composed of the modified MESA isolation without parasitic MOS operation, the dual gate SOI-MOSFETs with tied or floating bodies optimized for DRAM specific circuits, the conventional stacked capacitor with increased capacitance by thinner dielectric film, and the other bulk-Si compatible DRAM structure. Moreover, a body bias control technique was applied for body-tied MOSFETs to realize high performance even at low voltage. Integrating the above technologies in the newly designed 0.5-μm 16 MDRAM, high-speed DRAM operation of less than 50 ns has been obtained at low supply voltage of 1 V  相似文献   

4.
Circuit techniques for battery-operated DRAMs which cover supply voltages from 1.5 to 3.6 V (universal Vcc), as well as their applications to an experimental 64-Mb DRAM, are presented. The universal-Vcc DRAM concept features a low-voltage (1.5 V) DRAM core and an on-chip power supply unit optimized for the operation of the DRAM. A circuit technique for oxide-stress relaxation is proposed to improve high-voltage sustaining characteristics while only scaled MOSFETs are used in the entire chip. This technique increases sustaining voltage by about 1.5 V compared with conventional circuits and allows scaled MOSFETs to be used for the circuits, which can be operated from an external Vcc of up to 4 V. A two-way power supply scheme is proposed to suppress the internal voltage fluctuation within 10% when the DRAM is operated from external power supply voltages ranging from 1.5 to 3.6 V. An experimental 1.5-3.6-V 64-Mb DRAM is designed based on these techniques and fabricated by using 0.3-μm electron-beam lithography. An almost constant access time of 70 ns is obtained. This indicates that battery operation is a promising target for future DRAMs  相似文献   

5.
This paper presents the high-performance DRAM array and logic architecture for a sub-1.2-V embedded silicon-on-insulator (SOI) DRAM. The degradation of the transistor performance caused by boosted wordline voltage level is distinctly apparent in the low voltage range. In our proposed stressless SOI DRAM array, the applied electric field to the gate oxide of the memory-cell transistor can he relaxed. The crucial problem that the gate oxide of the embedded-DRAM process must be thicker than that of the logic process can be solved. As a result, the performance degradation of the logic transistor can be avoided without forming the gate oxides of the memory-cell array and the logic circuits individually. In addition, the data retention characteristics can be improved. Secondly, we propose the body-bias-controlled SOI-circuit architecture which enhances the performance of the logic circuit at sub-1.2-V power supply voltage, Experimental results verify that the proposed circuit architecture has the potential to reduce the gate-delay time up to 30% compared to the conventional one. This proposed architecture could provide high performance in the low-voltage embedded SOI DRAM  相似文献   

6.
This paper presents a new power-reduction scheme using a back-gate-controlled asymmetrical double-gate device with robust data-retention capability for high-performance logic/SRAM power gating or variable/dynamic supply applications. The scheme reduces the transistor count, area, and capacitance in the header/footer device and provides a wide range of virtual ground (GND) or supply voltage. Physical analysis and numerical mix-mode device/circuit-simulation results confirm that the proposed scheme can be applied to low-power high-performance circuit applications in 65-nm technology node and beyond. Variable/dynamic supply or GND voltage using the proposed scheme improves read and write margins in scaled SRAM without degrading read and write performance.  相似文献   

7.
A charge recycle refresh for low-power DRAM data-retention, featuring alternative operation of two memory arrays, is proposed, and demonstrated using a 64 kb test chip with 0.25 μm technology. After amplification in one array, the charges in that array are transferred to another array, where they are recycled for half amplification. The data-line current dissipation is only half that of the conventional refresh operation, and the voltage bounce of the power supply line is 60% of the conventional. This scheme is further extended for application to n arrays with 1/n data-line current dissipation. Moreover, the multi-array activation with charge recycle refresh is proposed, in which the same peak current as in the conventional scheme is achieved with a small number of refresh cycles for refreshing all the cells  相似文献   

8.
A 29-ns (RAS access time), 64-Mb DRAM with hierarchical array architecture has been developed. For consistent high yields and high speed, a CMOS segment driver circuit is used as a hierarchical word line scheme. To achieve high speed, precharge signal (PC) drivers for equalizing the bit lines pairs, and shared sense amplifier signal (SHR) drivers are distributed in the array. To enhance sense amplifiers speed in low array voltage, an over driven sense amplifier is adopted. A hierarchical I/O scheme with semidirect sensing switch is introduced for high speed data transfer in the I/O paths. By combining these proposed circuit techniques and 0.25-μm CMOS process technologies with phase-shift optical lithography, an experimental 64-Mb DRAM has been designed and fabricated. The memory cell size is 0.71×1.20 μm 2, and the chip size is 15.91×9.06 mm2. A typical access time under 3.3 V power supply voltage is 29 ns  相似文献   

9.
A precharged capacitor-assisted sensing (PCAS) scheme suitable for low-power DRAM using boosted-sense ground (BSG) is proposed. In this scheme, the data on bitlines are sensed with the assistance of precharged capacitors. Precise data level generation is achieved with sense speed 4.2 ns faster than the conventional scheme in the case that bitline swing is 1.4 V. Necessary decoupling capacitors can be efficiently implemented in memory arrays by using junction capacitors between well and substrate so that the area penalty of decoupling capacitors can be minimized. To keep sensed data stable, two types of level controllers are introduced. A voltage downconverter (VDC) with a current mirror discharger (CMD) compensates for the change of both data levels during write/read operations. A level controller with charge transfer amplifier (CTA) prevents the BSG level from falling during the row active period. The two level controllers greatly improve data-retention characteristics  相似文献   

10.
In order to achieve 3.3-V 1-Gb DRAM and beyond, a new on-chip supply voltage conversion scheme that converts 3.3-V external supply voltage, Vext, to lowered 1.5-V internal supply voltage, Vent, without any power loss within the voltage converter is proposed. This scheme connects two identical DRAM circuits in series between Vixt and Vss. By operation of two DRAM circuits with the same clock timing, the voltage between two DRAMs, Vint, is automatically fixed to 1/2Vext. Therefore, each upper and lower DRAM circuit can operate at lowered 1/2Vext without use of the conventional voltage converter. This scheme was successfully verified by an experimental system using 4-Mb DRAMs. Utilizing the proposed scheme, power dissipation was reduced by as much as 50% and stable operation was achieved without access speed penalty  相似文献   

11.
An experimental 1.5-V 64-Mb DRAM   总被引:1,自引:0,他引:1  
Low-voltage circuit technologies for higher-density dynamic RAMs (DRAMs) and their application to an experimental 64-Mb DRAM with a 1.5-V internal operating voltage are presented. A complementary current sensing scheme is proposed to reduce data transmission delay. A speed improvement of 20 ns was achieved when utilizing a 1.5-V power supply. An accurate and speed-enhanced half-VCC voltage generator with a current-mirror amplifier and tri-state buffer is proposed. With it, a response time reduction of about 1.5 decades was realized. A word-line driver with a charge-pump circuit was developed to achieve a high boost ratio. A ratio of about 1.8 was obtained from a power supply voltage as low as 1.0 V. A 1.28 μm2 crown-shaped stacked-capacitor (CROWN) cell was also made to ensure a sufficient storage charge and to minimize data-line interference noise. An experimental 1.5 V 64 Mb DRAM was designed and fabricated with these technologies and 0.3 μm electron-beam lithography. A typical access time of 70 ns was obtained, and a further reduction of 50 ns is expected based on simulation results. Thus, a high-speed performance, comparable to that of 16-Mb DRAMs, can be achieved with a typical power dissipation of 44 mW, one tenth that of 16-Mb DRAMs. This indicates that a low-voltage battery operation is a promising target for future DRAMs  相似文献   

12.
郭家荣  冉峰  徐美华 《电子学报》2014,42(5):1030-1034
提出一种适用于低压快闪存储器的电流模式的低压灵敏放大器.该灵敏放大器在基准电流产生电路中使用电阻电流镜代替传统的晶体管电流镜,使得基准电流产生电路的工作电压减少了一个阈值电压,从而降低灵敏放大器的工作电压.位线电压控制电路中运算放大器的使用减少了由于温度和工艺变化所引起的位线电压变化,进而提高读取操作的精度.采用中芯国际90nm工艺设计,提出的灵敏放大器在1.2V电源电压时的读取时间是14.7ns,相对于传统的结构,单个灵敏放大器的功耗被优化了13%.  相似文献   

13.
A 4-Mb (512 K words by 8-b) CMOS static RAM (SRAM) with a PMOS thin-film transistor (TFT) has been developed. The RAM can obtain a much larger data-retention margin than a conventional high-resistive load-type well by using the PMOS TFT as a memory cell load. An internal voltage down-converter architecture with an external supply voltage-level sensor not only realizes a highly reliable 0.5-μm MOS transistor operation but also a sufficiently low standby-power dissipation characteristic for data battery-backup application. A self-aligned equalized level sensing scheme can minimize the sensing delay for a local sense amplifier to drive a large load capacitance of a global sensing bus line. The RAM is fabricated using a 0.5 μm, triple-poly, and double-aluminum with dual gate-oxide-thickness CMOS process technology. The RAM operates under a single 5-V supply voltage with 23-ns typical address access time and 20- and 70-mA operation current at 10 and 40 MHz, respectively  相似文献   

14.
The feasibility of realizing an emitter-coupled-logic (ECL) interface 4-Mb dynamic RAM (DRAM) with an access time under 10 ns using 0.3-μm technology is explored, and a deep submicrometer BiCMOS VLSI using this technology is proposed. Five aspects of such a DRAM are covered. They are the internal power supply voltage scheme using on-chip voltage limiters, an ECL DRAM address buffer with a reset function and level converter, a current source for address buffers compensated for device parameter fluctuation, an overdrive rewrite amplifier for realizing a fast cycle time, and double-stage current sensing for the main amplifier and output buffer. Using these circuit techniques, an access time of 7.8 ns is expected with a supply current of 198 mA at a 16-ns cycle time  相似文献   

15.
A new reference voltage generator with ultralow standby current of less than 1 μA is proposed. The features are: 1) a merged scheme of threshold voltage difference generator and voltage-up converter with current mirror circuits, and 2) intermittent activation technique using self-refresh clock for the DRAM. This combination enables the average current to be reduced to 1/100 and the resistance of trimming resistor to be reduced to 1/10 compared to conventional reference voltage generators, while maintaining high accuracy and high stability. The proposed circuit was experimentally evaluated with a test device fabricated using 0.3-μm process. An initial error of less than 4% for 6 trimming steps of the trimming resistor, temperature dependence of less than 370 ppm/°C from room temperature to 100°C, and output noise of less than 12 mV for 1 Vp-p Vcc bumping are achieved. These results are sufficient for achieving high-density battery operated DRAMs with low active and data-retention currents comparable to SRAMs  相似文献   

16.
A dual-mode sensing (DMS) scheme for a capacitor-coupled EEPROM cell is described. A memory cell structure and a sensing scheme are proposed and estimated. The memory cell combines an EEPROM cell with a DRAM cell. The DMS scheme utilizes the charge-mode sensing of the EEPROM cell. Using this DMS technique, the sensing speed can be enhanced by 36% at a cell current of 15 μA by virtue of the additional charge-mode sensing. Furthermore, the stress applied to the tunnel oxide of the memory transistor can be relieved by decreasing the programming voltage and shortening the programming time. Therefore, with this memory cell structure and sensing scheme, it is possible to realize high-speed sensing in low-voltage operation and high endurance  相似文献   

17.
Presents a new DRAM array architecture for scaled DRAMs. This scheme suppresses the stress bias for memory cell transistors and enables memory cell transistor scaling. In this scheme, the data "1" and data "0" are written to the memory cell in different timing. First, for all selected cells, data "1" is written by boosting wordline (WL) voltage. Second, after pulling down WL voltage to a lowered value, data "0" is written only for data "0" cells. This scheme reduces stress bias for the cell transistor to half of that of the conventional operation. The time loss for data "1" write is eliminated by parallel processing of data "1" write and sense amplifier activation. This scheme realizes fast cycle time of 50 ns. By adopting the proposed scheme, the gate-oxide thickness of the cell transistor is reduced from 5.5 to 3 nm, and the memory cell size is reduced to 87% in 0.13-μm DRAM generation. Moreover, the application of the oxide-stress relaxation technique to all row-path circuits as well as the proposed scheme enables high-performance DRAM with only a thin gate-oxide transistor  相似文献   

18.
Jiarong Guo 《半导体学报》2017,38(4):045001-5
A low-voltage sense amplifier with reference current generator utilizing two-stage operational amplifier clamp structure for flash memory is presented in this paper, capable of operating with minimum supply voltage at 1 V. A new reference current generation circuit composed of a reference cell and a two-stage operational amplifier clamping the drain pole of the reference cell is used to generate the reference current, which avoids the threshold limitation caused by current mirror transistor in the traditional sense amplifier. A novel reference voltage generation circuit using dummy bit-line structure without pull-down current is also adopted, which not only improves the sense window enhancing read precision but also saves power consumption. The sense amplifier was implemented in a flash realized in 90 nm flash technology. Experimental results show the access time is 14.7 ns with power supply of 1.2 V and slow corner at 125 ℃.  相似文献   

19.
This paper describes DRAM array driving techniques and the parameter scaling techniques for low voltage operation using the boosted sense ground (BSG) scheme and further improved methods. Temperature compensation and adjustable internal voltage levels maintain a small subthreshold leakage current for a memory cell transistor (MC-Tr), and a distributed BSG (DBSG) scheme and a column decoded sensing (CDS) scheme achieve the effective scaling. These schemes can set the DRAM array free from the leakage current problem and the influence of temperature variations. Therefore, parameters for the MC-Tr, threshold voltage (V th), and the boosted voltage for the gate bias can be scaled down, and it is possible to determine the Vth of the MC-Tr simply (0.45 V at K=0.4) for the satisfaction of the small leakage current, for high speed and stable operation, and for high reliability (VPP is below 2 VCC). They are applicable to subquarter micron DRAM's of 256 Mb and more  相似文献   

20.
A 512-Mb DDR-II SDRAM has achieved 700-Mb/s/pin operation at 1.8-V supply voltage with 0.12-/spl mu/m DRAM process. The low supply voltage presents challenges in high data rate and signal integrity. Circuit techniques such as hierarchical I/O lines, local sense amplifier, and fully shielded data lines without area penalty have provided improved data access time and, thus, high data rate can be achieved. Off-chip driver with calibrated strength and on-die termination are utilized to give sufficient signal integrity for over 533-Mb/s/pin operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号