共查询到18条相似文献,搜索用时 93 毫秒
1.
K-均值聚类具有简单、快速的特点,因此被广泛应用于图像分割领域。但K-均值
聚类容易陷入局部最优,影响图像分割效果。针对K-均值的缺点,提出一种基于随机权重粒子
群优化(RWPSO)和K-均值聚类的图像分割算法RWPSOK。在算法运行初期,利用随机权重粒
子群优化的全局搜索能力,避免算法陷入局部最优;在算法运行后期,利用K-均值聚类的局部
搜索能力,实现算法快速收敛。实验表明:RWPSOK 算法能有效地克服K-均值聚类易陷入局
部最优的缺点,图像分割效果得到了明显改善;与传统粒子群与K-均值聚类混合算法(PSOK)
相比,RWPSOK 算法具有更好的分割效果和更高的分割效率。 相似文献
2.
模糊C-均值(FCM)聚类算法是一种结合无监督聚类和模糊集合概念的图像分割技术,比较有效,但存在着受初始聚类中心和隶属度矩阵影响,可能收敛到局部极小的缺点。将粒子群优化算法(PSO)与模糊C-均值聚类算法相结合,实现了基于粒子群模糊C-均值聚类的图像分割算法。实验表明,该方法具有搜索全局最优解的能力,因而可得到很好的图像分割结果。 相似文献
3.
基于核的K-均值聚类 总被引:17,自引:0,他引:17
将核学习方法的思想应用于K-均值聚类中,提出了一种核K-均值聚类算法,算法的主要思想是:首先将原空间中待聚类的样本经过一个非线性映射,映射到一个高维的核空间中,突出各类样本之间的特征差异,然后在这个核空间中进行K-均值聚类。同时还将一种新的核函数应用于核K-均值聚类中以提高算法的速度。为了验证算法的有效性,分别利用人工和实际数据进行K-均值聚类和核K-均值聚类,实验结果显示对于一些特殊的类分布数据,核K-均值聚类比K-均值聚类具有更好的聚类效果。 相似文献
4.
针对支持向量机进行图像分割时需要用户设定训练样本问题,提出一种根据图像特征使用C均值聚类算法自动获取支持向量机训练样本的方法。首先将图像分成几个区域,对每个区域利用小波分解去掉含有图像边缘的区域,然后对剩余的平滑区域计算能量均值作为特征值,使用C均值聚类算法对平滑区域分类,将特征值与类别标记作为支持向量机的训练样本,最后用训练后的分类器对图像进行分割。实验结果表明提出的方法取得了很好的分割结果,同时用一幅有代表性的图像进行支持向量机训练,所产生的分类器可以应用于所有该类图像,因此可以很容易应用到体数据的分割中。 相似文献
5.
6.
基于混沌粒子群和模糊聚类的图像分割算法* 总被引:1,自引:2,他引:1
模糊C-均值聚类算法(FCM)是一种结合模糊集合概念和无监督聚类的图像分割技术,适合灰度图像中存在着模糊和不确定的特点;但该算法受初始聚类中心和隶属度矩阵的影响,易陷入局部极小.利用混沌非线性动力学具有遍历性、随机性等特点,结合粒子群的寻优特性,提出了一种基于混沌粒子群模糊C-均值聚类(CPSO-FCM)的图像分割算法.实验证明,该方法不仅具有防止粒子因停顿而收敛到局部极值的能力,而且具有更快的收敛速度和更高的分割精度. 相似文献
7.
黄力明 《计算机工程与设计》2008,29(9):2300-2303
模糊C-均值聚类算法广泛用于图像分割,但存在聚类性能受类中心初始化影响,且计算量大等问题.为此,提出了一种基于微粒群的模糊C-均值聚类图像分割算法,该方法利用微粒群较强的搜索能力搜索聚类中心:由于搜索聚类中心是按密度进行,计算量小,故可以大幅提高模糊C-均值算法的计算速度.实验结果表明,该方法可以使模糊聚类的速度得到明显提高,实现图像的快速分割. 相似文献
8.
基于PSO的模糊C-均值聚类算法的图像分割 总被引:3,自引:0,他引:3
根据粒子群优化算法(PSO)强大的全局搜索能力,提出了用PSO算法优化模糊C均值聚类(FCM)的聚类中心的方法,有效地避免了传统的FCM对初始值及噪声数据敏感,容易陷入局部最优的缺点,同时图像分割的效果也得到了提高,性能也比传统的FCM方法更加稳定。实验结果反映了该方法的有效性。 相似文献
9.
从图像数据库中快速、准确地检索出所需要的图像,具有广泛的应用前景。针对使用单一图像特征难以准确表达图像之间的差异问题,提出了一种利用颜色聚类分割和形状特征提取的图像检索算法。选择符合人眼视觉特征的HSV空间,分别重组最能描述图像颜色特征的H分量和形状特征的V分量;用K均值聚类算法对两个分量进行聚类分割,得到目标物体;提取目标物体的Hu不变矩和傅里叶描述子来描述形状特征;用欧式距离进行相似度测量并用于图像检索中。采用不同类型图像进行实验,结果表明该算法优于使用单一特征和一般分割方法的图像检索技术。 相似文献
10.
11.
彩色图像分割在图像处理中占据重要的位置。为避免手动选取图像样本的不可靠性,文中采用K-means预分类图像,再通过Matlab编程自动选取图像的HSV颜色空间的特征样本。文中提出分块的思想:对彩色图像处理前进行分块处理,可判断为背景或前景的子块直接输出,对需要分割的子块运用支持向量机(SVM)方法进行训练分割。线性组合全局核函数和局部核函数,选出适合图像分割的最优组合核函数并引入粒子群算法优化支持向量机(PSO-SVM)的核参数c、g。实验表明,文中方法是有效的,图像分割精度满意、稳定。 相似文献
12.
针对单一聚类算法在图像分割中容易陷人局部最优或有过分割现象,造成分割精确度低等问题,文章提出了基于K-均值聚类和蚁群聚类相结合的新算法.新算法先将K-均值算法作快速分类,根据K-均值分类结果更新蚂蚁各路径上的信息素,指导其他蚂蚁选择,以提高蚁群聚类算法的运行效率.实验结果证明,新算法在图像分割处理的精确度上较单一的K均... 相似文献
13.
针对SVM进行图像分割时存在对噪声和孤立点较敏感导致分割结果不佳和抗造性能低下等问题,提出一种基于视觉注意和改进隶属度的FSVM (Modified fuzzy SVM,MFSVM)彩色图像分割方法.该方法在考虑人类视觉显著性检测机制因素的同时,对标准的模糊SVM算法进行改进,新的隶属度函数综合考虑了样本点距离类中心的远近以及样本点的疏密程度,从而有效惩罚噪声点并增强了支持向量的作用.通过彩色图像分割进行验证,结果显示与标准的SVM及基于样本疏密程度隶属度的FSVM分割方法相比,本文方法能够对复杂场景下的彩色进行有效分割,同时呈现出良好的抗噪能力. 相似文献
14.
提出了一种改进的K均值聚类图像分割方法。针对彩色图像的像素特征,利用Ohta等人的研究成果,选取能有效表示彩色像素特征的彩色特征集中的第一个分量作为图像像素的一维特征向量,用来替代经典K均值聚类图像分割中的灰度.大大降低了运算量。基于粗糙集理论的算法,求出初始聚类个数与均值。选用对特征空间结构没有特殊要求的特征距离代替欧氏距离,应用改进的K均值聚类算法对样本数据进行聚类,从而实现对彩色图像的快速自动分割。实验表明,该图像分割算法可有效提高图像分类的精度和准确度,并且运算代价小.收敛速度快。 相似文献
15.
提出一种结合特征场和模糊核聚类支持向量机的图像分类辨识方法。首先,构造符合人类视觉特性的图像彩色和纹理特征数据场,一方面,引入新阈值,建立图像纹理特征;另一方面,在图像彩色特征上,对能够引起注意的像素区域的像素点进行加权处理,并使用彩色空间分布离散度来描述彩色的空间分布。其次,采用模糊核聚类支持向量机对图像进行分类研究。在使用特征空间时,不仅考虑了样本与类中心间的关系,还考虑了类中各个样本间的关系,以模糊连接度来度量类中各个样本间的关系,并以二叉树方式构造子分类器。实验结果表明,该方法可以获得较好的图像分类效果。 相似文献
16.
为了提高图像分割的质量和效率,同时,针对粒子群优化算法(Particle Swarm Optimization, PSO)容易陷于局部最优和K-均值算法对初始聚类中心敏感的问题,本文将PSO和K-均值算法相结合,提出一种通过调整惯性权重和学习因子的优化算法。首先,对图像进行去噪预处理,并将处理后的颜色图像转换到HSV空间,以提高色彩质量。然后,改进粒子群算法中的惯性权重和学习因子公式及参数,避免陷入局部最优。最后,根据粒子的适应度切换到K-均值算法执行局部搜索,使聚类中心不断更新实现快速收敛。实验结果表明,在图像分割的过程中,改进的算法具有全局搜索能力强的优点,能够实现更快的收敛速度和更高的分割精度。 相似文献
17.
支持向量机(SVM)建模的拟合精度和泛化能力取决于相关参数的选取,目前SVM中的参数的寻优一般只针对惩罚系数和核参数,而混合核函数的引入,使SVM增加了一个可调参数.针对混合核函数SVM的多参数选择问题,提出利用具有较强全局搜索能力的混沌粒子群(CPSO)优化算法对混合核函数SVM建模过程中的重要参数进行优化调整,每一... 相似文献
18.
基于SOM神经网和K-均值算法的图像分割 总被引:2,自引:0,他引:2
提出了一种基于SOM神经网络和K-均值的图像分割算法。SOM网络将多维数据映射到低维规则网格中,可以有效地用于大型数据的挖掘;而K-均值是一种动态聚类算法,适用于中小型数据的聚类。文中算法利用SOM网络将具有相似特征的象素S点映射到一个2-D神经网上,再根据神经元间的相似性,利用K-均值算法将神经元聚类。文中将该算法用于彩色图像的分割,并给出了经SOM神经网初聚类后,不同K值下神经元聚类对图像分割的结果及与单纯K-均值分割图像进行对比。 相似文献