首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
研究了20钢在不同渗硼温度和不同渗硼时间下对渗硼层组织和性能的影响。用金相显微镜和扫描电镜观察了渗硼层的形貌,测定了渗硼层的厚度;用维氏硬度计测定了渗硼层的硬度;用纳米压痕仪测定了渗硼层不同深度的硬度;评定了渗硼层与基体的结合力;采用X射线衍射仪分析了渗硼层的物相组成;在不同溶液中进行了渗硼层耐蚀性试验。结果表明:渗硼层厚度均匀,呈齿状结构,与基体结合牢固,渗硼层主要由Fe_2B组成。在860℃下保温不同时间,渗硼层的厚度随时间的增长而增大;在不同温度下保温5h时,渗硼层的厚度随温度的升高而逐渐增大。渗硼层表层硬度稍低,然后升高达到最大值,在渗层与过渡区的交界处急剧下降。除HNO_3外,渗硼处理后的试样在HCl、H_2SO_4、NaCl和NaOH溶液中的耐蚀性均比未渗硼的试样好。  相似文献   

2.
球墨铸铁粉末渗硼的耐蚀性能研究   总被引:1,自引:0,他引:1  
赵景浩  罗宏 《热加工工艺》2014,(12):166-169,180
对球墨铸铁在不同温度和时间下分别进行渗硼处理,采用金相显微镜观察了渗硼层的形貌,测定了渗硼层的厚度;用显微硬度计测定了渗硼层的表面硬度;用X射线衍射仪分析了渗硼层的物相组成;用扫描电镜测定了渗硼层表面元素含量;并在10%的HCl、H2SO4、HNO3、NaCl、NaOH溶液中做了耐蚀性对比试验。结果表明:渗硼层厚度均匀,呈齿状结构与基体结合牢固,渗硼层主要由Fe2B单相组成;在950℃下保温不同时间,渗硼层的厚度及硬度均随时间的增长而逐渐增大;在不同温度下保温5 h时,渗硼层厚度随温度的升高而逐渐增大,渗硼层的硬度随温度的升高先增大后减小,除HNO3外,渗硼处理后试样的耐蚀性均比未渗硼的试样的耐蚀性能好。  相似文献   

3.
苏学虎 《金属热处理》2021,46(6):120-125
对1Cr13马氏体不锈钢进行950 ℃预渗碳6 h复合不同渗硼工艺处理,通过光学显微镜(OM)、扫描电镜(SEM)及配套能谱分析仪(EDS)、显微维氏硬度计、XRD、电化学工作站等研究了复合渗工艺以及最终热处理对硼碳复合渗层组织和性能的影响。结果表明,1Cr13钢最佳硼碳复合渗工艺为950 ℃固体渗碳6 h复合950 ℃固体粉末渗硼6 h,在此工艺下,渗硼层硬度高达1436 HV0.1,交界层硬度为924 HV0.1,预渗碳层硬度为630~910 HV0.1,基体心部硬度为560~590.7 HV0.1,复合渗层硬度梯度整体较为平缓。EDS检测得出交界层Cr元素含量最高,其质量分数为13.49%。XRD物相检测得出渗硼层中主要是硬度高且脆性较小的Fe2B相,存在少量FeB和CrB相。复合渗试样与原样的腐蚀电极电位相比提升了0.104 V,硼碳复合渗工艺提高了1Cr13不锈钢的耐腐蚀性能。  相似文献   

4.
ZG1Cr18Ni9奥氏体不锈钢的渗硼   总被引:2,自引:0,他引:2  
对ZG1Cr18Ni9奥氏体不锈钢进行了渗硼处理,渗硼剂采用含双活化剂(氟硼酸钾和氯化铵)的粉末渗硼剂:碳化硼+碳粉+碳化硅+氟硼酸钾+氯化铵,渗硼温度为950 ℃,渗硼时间为7 h.在金相显微镜下观察渗层组织致密,齿型平坦,并测得渗层的厚度为38~42 μm;经X射线衍射分析以及扫描电镜观察表明,渗层主要由FeB相组成,在过渡区有明显的增铬现象,说明硼化物层有一定的排铬作用.利用显微硬度计测得渗后形成的硼化物层的硬度可达2000 HV0.1.沿硼化物-过渡区-基体方向,硬度值呈逐渐下降趋势.渗层的脆性较小,脆性级别为2级.ZG1Cr18Ni9奥氏体不锈钢通过含双催渗剂的渗硼剂渗硼,组织均匀且与基体结合紧密,硬度明显提高.  相似文献   

5.
45钢渗硼工艺对渗层组织与性能的影响   总被引:3,自引:0,他引:3  
研究了渗硼温度、保温时间和渗硼剂配方对45钢渗硼层组织和性能的影响.结果表明:在给定实验条件下,渗硼层组织致密,硼化物呈针齿状楔入基体,与基体结合牢固;渗硼层厚度随渗硼温度的升高、保温时间的延长而增加.相比而言,温度对渗硼层厚度的影响大于时间的影响;渗硼层中FeB相使表面硬度显著提高:渗硼层抗盐酸、硫酸、氢氧化钠腐蚀性优良.  相似文献   

6.
目的 通过固体粉末渗硼法直接烧结铁基粉末冶金材料,制备具有渗硼层的试样。方法 采用固体渗硼工艺对铁基粉末冶金材料在1123、1223、1323 K温度下渗硼处理3、5、7、10 h,采用光学显微镜及扫描电镜(SEM)观察了渗硼层的形貌,测定了渗硼层的厚度。用X射线衍射仪分析了渗硼层的物相组成,用摩擦磨损试验评估渗硼层的耐磨性,采用Rockwell-C粘附性试验评估渗硼层与基体的粘合强度质量。对渗层的生长动力学曲线进行拟合,得出渗层动力学曲线和厚度等值线图。结果 试样的渗硼层厚度为35~ 183 μm,1323 K条件下获得双相渗硼层(Fe2B+FeB),1123 K及1223 K条件下获得单相渗硼层Fe2B。试样在1223 K温度下渗硼处理5 h获得的渗硼层的耐磨性最佳,其粘合强度质量根据规范通过HF3等级认可。该试验中B元素的扩散激活能为164 kJ/mol。结论 烧结温度和渗硼时间与渗层厚度关系密切,渗硼时间与渗层厚度的关系呈现出抛物线关系。厚度值的平方与渗硼时间符合阿瑞纽斯(Arrhenius)公式呈线性关系。渗硼层的显微硬度显著高于基体硬度,随时间的增加,渗层中出现较多的孔洞与疏松,渗硼层形状由明显的梳齿状逐渐变成不太明显的梳齿状,此情况在高温下更加明显。  相似文献   

7.
采用粉末包埋法在GCr15轴承钢表面制备了渗铌层。研究了处理温度和保温时间对渗铌层组织、物相及性能的影响。结果表明:加热温度950~975℃、加热时间3~5 h时渗铌层组织均匀致密,与基体结合紧。渗铌层主要是由NbC、Nb_2C和α-Fe组成。渗层厚度随温度和时间的升高而逐渐增厚,在950℃、5 h时渗层厚度、显微硬度分别达96μm、3033 HV0.2。  相似文献   

8.
2205双相不锈钢固溶处理工艺研究   总被引:3,自引:0,他引:3  
伍曦耘 《大型铸锻件》2009,(4):16-18,21
2205双相不锈钢在910~1300℃不同的温度保温40rain后,分别进行空冷或水冷固溶处理。用金相显微镜观察了2205双相不锈钢的显微组织,测定了组织α相的含量和显微硬度。结果表明:随着固溶处理温度的升高,α相含量逐渐升高。建议2205双相不锈钢的固溶处理工艺为固溶温度1070℃,保温40min,水冷。  相似文献   

9.
采用固体粉末渗硼法对TC4钛合金基体表面进行渗硼试验。通过扫描电镜(SEM)、能谱(EDS)与X射线衍射 (XRD)研究TC4钛合金渗硼后的物相组成和组织形貌,讨论渗硼过程中元素的扩散行为。结果表明:在1000,1050和1100 ℃分别保温5,20 h后,渗层由外表层的TiB2和内表层的TiB晶须组成,渗层厚度范围为0.8~15 μm。XRD分析表明:TC4钛合金渗硼后形成TiB2与TiB双相硼钛化合物层,随着温度的升高,TiB2与TiB的峰位增多;EDS分析得出表层B原子被TC4钛合金吸附后与基体的Ti化合导致过渡区域内的Ti含量减少,同时Al和V元素开始向基体扩散并在近界面处富集。渗层的显微硬度呈梯度分布,TiB2到TiB晶须维氏硬度值的变化范围为22 000~11 000 MPa,过渡区的硬度值要高于基体的硬度值。  相似文献   

10.
通过固体粉末渗硼法直接烧结铁基粉末冶金材料,制备具有渗硼层的试样。将铁基粉末冶金材料在850、950和1050 ℃渗硼处理3、5和10 h,采用光学显微镜及扫描电镜观察了渗硼层的形貌,测定了渗硼层的厚度;用 X 射线衍射仪分析了渗硼层的物相组成;用Rockwell-C粘附性试验评估渗硼层与基体的粘合强度质量。使用 HT-1000 型高温摩擦磨损试验机测试了试样的摩擦磨损性能。结果表明,在850 ℃及950 ℃下渗硼形成单相Fe2B,而FeB+Fe2B双相渗硼层在1050 ℃下生成。粘附性试验与高温磨损试验均表明,在950 ℃下渗硼5 h的试样的渗层与基体结合最为紧密,抗磨损及抗氧化的能力最强。高温摩擦磨损试验中,微裂纹引起的分层剥落及氧化磨损是渗硼试样主要的磨损机制,未渗硼试样出现严重的的氧化和塑性变形。  相似文献   

11.
对2205双相不锈钢采用不同温度进行热处理,然后用光学显微镜和电子扫描电镜观察其在0.33mol/L FeCl3+0.05 mol/L HCl溶液中腐蚀后的形貌;测试其显微硬度的变化、在沸腾的65%的硝酸溶液中浸蚀24 h的腐蚀速率和在25℃的3.5%NaCl溶液中的点蚀电位。研究表明:2205双相不锈钢在750~900℃保温4h有σ相析出,材料的显微硬度增大。同时随着热处理温度的升高,2205双相不锈钢的点蚀电位降低,腐蚀速率增大。  相似文献   

12.
45钢低温渗硼层的组织与性能   总被引:4,自引:0,他引:4  
探讨了45钢低温渗硼层的组织与性能,结果表明,氏温渗硼层通常呈针状,在渗硼层前沿没有如高温渗硼那样的晶粒粗大的伪共析或过共析组织的过渡区,而只有一个相对较窄的富碳区,低温渗硼层的耐磨性和耐蚀性较高温渗硼层有所提高,而其脆性却有所降低。在一定条件下会出现块粒状硼化物层,其耐磨性低于针状渗硼层,而其耐蚀性却优于针状渗硼层。  相似文献   

13.
1 INTRODUCTIONAttheendofthetwentiethcentury ,alithiumreductiontechniquewasdevelopedtodisposeofnucle arfuel(UO2 )used[1] .Inthis process ,theoxide(UO2 )isreducedtothemetallicform(U)byreactionwithlithiumdissolvedinmoltenLiClat 75 0℃ .Thetechniquecaneffectivelyreducethevolumeandradia tionofspentnuclearfuel,whichisconvenienttostoreandmanage .Unfortunately ,thecontainmentmaterialsusedinthetechniqueundertakeseverecor rosionowingtothestrongbasicoxideLi2 OformedanddissolvedinmoltenLiCl.Sev…  相似文献   

14.
固溶处理对2205双相不锈钢组织及钝化膜特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
用不同温度对2205双相不锈钢进行固溶处理,利用定量金相法及硬度法、电化学极化试验、电化学阻抗谱试验的方法研究固溶温度与2205双相不锈钢微观组织和钝化膜特性之间的关系。结果表明,当固溶温度为950 ℃时,有σ相存在,分布于铁素体/奥氏体晶界,当固溶温度为1000 ℃时,σ相消失,铁素体相比例随固溶温度的升高而升高,奥氏体相比例则呈相反规律;电化学试验和阻抗谱试验结果显示,材料在950 ℃时钝化膜稳定性和耐蚀性能最差,在1050 ℃时钝化膜稳定性和耐蚀性能最好。  相似文献   

15.
采用固体渗硼工艺对65Mn钢进行渗硼处理,并借助光学显微镜、X射线衍射仪、电子探针及维氏硬度计等手段系统研究了渗硼温度(800~1000 ℃)和渗硼保温时间(2~8 h)对65Mn钢渗硼层厚度、微观组织和硬度的影响规律以及渗硼层的生长动力学。结果表明,随着渗硼温度的升高或渗硼时间的延长,渗硼层的厚度不断增大,但当渗硼温度超过900 ℃时,渗硼层中黑色孔洞的数量、大小以及距离渗硼层表面的深度都逐渐增大。65Mn钢渗硼层都由Fe2B柱状晶,以及位于Fe2B柱状晶生长前沿及晶粒间的Fe3(B,C)相、二元铁硅化合物和三元铁碳硅化合物组成,其维氏硬度(800~1590 HV0.05)远大于65Mn钢基体的硬度(238 HV0.05)。由于硬度较低的Fe3(B,C)相和富硅相分布于高硬度的Fe2B柱状晶晶粒之间,导致渗硼层的硬度并不随离渗硼层表面距离的增加而单调减小。渗硼层厚度的平方与渗硼时间呈线性关系,B原子在65Mn钢渗硼层中的扩散激活能为220.96 kJ/mol。  相似文献   

16.
45钢用固体法渗硼后,再经10s、20s、30s、40s高频感应加热处理。研究了不同时间感应加热对渗硼层层深的影响及显微组织变化。结果表明,随感应加热时间的增加,总层深先变厚,后变薄。渗层中的FeB相逐渐变为Fe2B时,加热时间达到30s时,FeB相全部变为Fe2B相。  相似文献   

17.
目的提高316L不锈钢的硬度、耐磨性。方法在400℃、2 Pa下,利用空心阴极直流弧辅助,进行了316L奥氏体不锈钢离子渗氮(PN)、离子氮碳共渗(PNC)及离子氮碳共渗加离子渗氮复合(PNC+PN)处理。针对处理后的样品,用莱卡显微镜、扫描电镜(SEM)、X射线衍射仪(XRD)、维氏硬度仪、3D形貌仪、球盘式摩擦磨损仪及电化学工作站等对组织、形貌、物相、机械性能及耐蚀性能进行表征。采用显微硬度计、微纳米综合力学系统测试分析处理后样品的力学性能。结果在空心阴极直流弧辅助下,三种工艺可获得超过3 mm/h的渗层生长速度。同316L不锈钢基体相比,PNC+PN复合处理样品的表面硬度提高3倍以上,在3.5%Na Cl中性电解质中的耐蚀电流密度降低约50%。结论 PNC处理和PNC+PN复合处理可获得更大的渗层厚度和更高的表面硬度,渗层中C、N含量越高,渗层组成相的晶格参数越大,渗层中产生的滑移带密度越大。低温低压等离子弧辅助离子渗不仅能有效提高316L不锈钢的表面硬度,还能提高不锈钢的耐蚀能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号