首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The authors examine the application of oversampling techniques to analog-to-digital conversion at rates exceeding 1 MHz. A cascaded multibit sigma-delta (ΣΔ) modulator that substantially reduces the oversampling ratio required for 12-b conversion while avoiding stringent component matching requirements is introduced. Issues concerning the design and implementation of the modulator are presented. At a sampling rate of 50 MHz and an oversampling ratio of 24, an implementation of the modulator in a 1-μm CMOS technology achieves a dynamic range of 74 dB at a Nyquist conversion rate of 2.1 MHz. The experimental modulator is a fully differential circuit that operates from a single 5-V power supply and does not require calibration or component trimming  相似文献   

2.
This paper presents the first implementation results for a time-interleaved continuous-time /spl Delta//spl Sigma/ modulator. The derivation of the time-interleaved continuous-time /spl Delta//spl Sigma/ modulator from a discrete-time /spl Delta//spl Sigma/ modulator is presented. With various simplifications, the resulting modulator has only a single path of integrators, making it robust to DC offsets. A time-interleaved by 2 continuous-time third-order low-pass /spl Delta//spl Sigma/ modulator is designed in a 0.18-/spl mu/m CMOS technology with an oversampling ratio of 5 at sampling frequencies of 100 and 200 MHz. Experimental results show that a signal-to-noise-plus-distortion ratio (SNDR) of 57 dB and a dynamic range of 60 dB are obtained with an input bandwidth of 10 MHz, and an SNDR of 49 dB with a dynamic range of 55 dB is attained with an input bandwidth of 20 MHz. The power consumption is 101 and 103 mW, respectively.  相似文献   

3.
This article describes the implementation of a continuous-time Delta-Sigma modulator for WCDMA/UMTS in wireless communication. The Delta-Sigma modulator employs a Gm-C based integrator to form a fourth-order noise-shaping loop. The modulator samples at 160 MHz and has an over-sampling ratio of 40 in 2 MHz bandwidth. To reduce power consumption and design complexity, single-bit quantisation is employed. The modulator is implemented in 0.25 µm 1-ploy 5-metal CMOS technology and has an area of 0.13 mm2. The modulator can achieve 70.7 dB of signal-to-noise-plus-distortion-ratio and 74 dB of dynamic range. Finally, the modulator consumes 3.5 mW of power with a reduced power supply of 1.8 V.  相似文献   

4.
This paper presents a high-order double-sampling single-loop /spl Sigma//spl Delta/ modulation analog-to-digital (A/D) converter. The important problem of noise folding in double-sampling circuits is solved here at the architectural level by placing one of the zeros in the modulator's noise transfer function at half the sampling frequency instead of in the baseband. The resulting modulator is of fifth order but has the baseband performance of a fourth-order modulator. Through the use of an efficient switched-capacitor implementation, the overall circuit uses only four operational amplifiers and hence, its complexity is similar to that of a fourth-order modulator. An experimental 1-bit modulator was designed for an oversampling ratio of 96 and a bandwidth of 250 kHz at a 3.3-V supply in a conservative 0.8-/spl mu/m standard CMOS process. Due to the double-sampling, the sampling frequency is 48 MHz, although the circuits operate at a clock frequency of only 24 MHz. The circuit achieves a dynamic range of 94 dB. The peak signal-to-noise ratio and signal-to-noise-plus-distortion ratio were measured to be 90 and 86 dB, respectively. The power consumption of the complete circuit including clock drivers and output pad drivers was 43 mW. The analog blocks (opamps, comparators, etc.) consume 30 mW of this total.  相似文献   

5.
A high-performance cascaded sigma-delta modulator is presented. It has a new three-stage fourth-order topology and provides functionally a maximum signal to quantization noise ratio of 16 bits and 16.5-bit dynamic range with an oversampling ratio of only 32. This modulator is implemented with fully differential switch-capacitor circuits and is manufactured in a 2-/spl mu/m BiCMOS process. The converter, operated from +/-2.5 V power supply, +/-1.25 V reference voltage and oversampling clock of 48 MHz, achieves 97 dB resolution at a Nyquist conversion rate of 1.5 MHz after comb-filtering decimation. The power consumption of the converter is 180 mW.<>  相似文献   

6.
The authors compare the second-order sigma-delta (ΣΔ) modulator to several alternative modulator architectures in the context of digital-audio signal acquisition. Design details and experimental results are presented for a 1 μm CMOS implementation that does not require error correction or component trimming to achieve virtually ideal 16 b performance at a conversion rate of 50 kHz. The experimental modulator is a fully differential circuit that operates from a single 5 V power supply and does not require the use of precision sample-and-hold circuitry. With an oversampling ratio of 256 and a clock rate of 12.8 MHz, the modulator achieves a 98 dB dynamic range and a peak signal-to-(noise+distortion) ratio (SNDR) of 94 dB. Measurements and simulations of discrete noise peaks in the output spectrum that result from limit-cycle oscillations are also presented and discussed  相似文献   

7.
Bandpass modulators sampling at high IFs (/spl sim/200 MHz) allow direct sampling of an IF signal, reducing analog hardware, and make it easier to realize completely software-programmable receivers. This paper presents the circuit design of and test results from a continuous-time tunable IF-sampling fourth-order bandpass /spl Delta//spl Sigma/ modulator implemented in InP HBT IC technology for use in a multimode digital receiver application. The bandpass /spl Delta//spl Sigma/ modulator is fabricated in AlInAs-GaInAs heterojunction bipolar technology with a peak unity current gain cutoff frequency (f/sub T/) of 130 GHz and a maximum frequency of oscillation (f/sub MAX/) of 130 GHz. The fourth-order bandpass /spl Delta//spl Sigma/ modulator consists of two bandpass resonators that can be tuned to optimize both wide-band and narrow-band operation. The IF is tunable from 140 to 210 MHz in this /spl Delta//spl Sigma/ modulator for use in multiple platform applications. Operating from /spl plusmn/5-V power supplies, the fabricated fourth-order /spl Delta//spl Sigma/ modulator sampling at 4 GSPS demonstrates stable behavior and achieves a signal-to-(noise + distortion) ratio (SNDR) of 78 dB at 1 MHz BW and 50 dB at 60 MHz BW. The average SNDR performance measured on over 250 parts is 72.5 dB at 1 MHz BW and 47.7 dB at 60 MHz BW.  相似文献   

8.
This paper presents the design and experimental results of a 1.25 MHz signal bandwidth 14 bit CMOS SigmaDelta modulator. With our proposed switched-capacitor split-path pseudo-differential amplifiers, this modulator achieves high power efficiency, high sampling frequency, and small die area. A new signal and reference front-end sampling network eliminates the input common-mode voltage and reduces power consumption and linearity requirement of the opamp. A prototype chip has been designed and fabricated in a 0.25 mum CMOS technology with a core area of 0.27 mm2. Experimental results show that an 84 dB dynamic range is achieved over a 1.25 MHz signal bandwidth when clocked at 125 MHz. The power dissipation is 14 mW at 2.4 V including on-chip voltage reference buffers.  相似文献   

9.
介绍了一个200kHz信号带宽、用于低中频结构GSM射频接收机的高精度∑△调制器.为了达到高线性和稳定性,调制器采用2-1级联单比特的结构实现.电路在0.18μm CMOS工艺下流片验证,核心面积为0.5mm×1.1mm.调制器工作在19.2MHz的采样频率,在3V电源电压下功耗为5.88mW.测试结果表明,在200kHz信号带宽,过采样率为64的条件下,调制器达到84.4dB动态范围,峰值SNDR达到73.8dB,峰值SNR达到80dB.  相似文献   

10.
在 0 .6μm CMOS工艺条件下设计了一种适合 DECT(Digital Enhanced Cordless Telephone)标准的 1 .4MS/s Nyquist转换速率、1 4位分辨率模数转换器的ΣΔ调制器。该调制器采用了多位量化的级联型 (2 -1 -1 4b)结构 ,通过 Cadence Spectre S仿真验证 ,在采样时钟为 2 5 MHz和过采样率为 1 6的条件下 ,该调制器可以达到 86.7d B的动态范围 ,在 3 .3 V电源电压下其总功耗为 76m W。  相似文献   

11.
This paper presents a CMOS 0.7-μm ΣΔ modulator IC that achieves 13-bit dynamic range at 2.2 MS/s with an oversampling ratio of 16. It uses fully differential switched-capacitor circuits with a clock frequency of 35.2 MHz, and has a power consumption of 55 mW. Such a low oversampling ratio has been achieved through the combined usage of fourth-order filtering and multibit quantization. To guarantee stable operation for any input signal and/or initial condition, the fourth order shaping function has been realized using a cascade architecture with three stages; the first stage is a second-order modulator, while the others are first-order modulators-referred to as a 2-1-1mb architecture. The quantizer of the last stage is 3 bits, while the other quantizers are single bit. The modulator architecture and coefficients have been optimized for reduced sensitivity to the errors in the 3-bit quantization process. Specifically, the 3-bit digital-to-analog converter tolerates 2.8% FS nonlinearity without significant degradation of the modulator performance. This makes the use of digital calibration unnecessary, which is a key point for reduced power consumption. We show that, for a given oversampling ratio and in the presence of 0.5% mismatch, the proposed modulator obtains a larger signal-to-noise-plus-distortion ratio than previous multibit cascade architectures. On the other hand, as compared to a 2.1.1single-bit modulator previously designed for a mixed-signal asymmetrical digital subscriber line modem in the same technology, the modulator in this paper obtains one more bit resolution, enhances the operating frequency by a factor of two, and reduces the power consumption by a factor of four  相似文献   

12.
We demonstrate a 12-bit 0–3 MASH delta-sigma modulator with a 3.125 MHz bandwidth in a 0.18 $muhbox{m}$ CMOS technology. The modulator has an oversampling ratio of 8 (clock frequency of 50 MHz) and achieves a peak SNDR of 73.9 dB (77.2 $~$dB peak SNR) and consumes 24 mW from a 1.8 V supply. For comparison purposes, the modulator can be re-configured as a single-loop topology where a peak SNDR of 64.5 dB (66.3 dB peak SNR) is obtained with 22 mW power consumption. The energy required per conversion step for the 0–3 MASH architecture (0.95 pJ/step) is less than half of that required by the feedback topology (2.57 pJ/step).   相似文献   

13.
This paper deals with the implementation of a second-order ΣΔ modulator in 0.18-μm CMOS technology. The analog-to-digital converter structure combines a 1-bit approach along with a high oversampling ratio (OSR). A silicon circuit prototype, including the modulator itself, a current reference, and the clock signals generator, was designed to operate with a 1.8-V supply, fabricated and tested. Measured values of 87 dB and 91 dB were obtained for the signal-to-noise-plus-distortion ratio (SNDR) and the dynamic range (DR), respectively, for a clock frequency of 8 MHz and an OSR of 256. The effective number of bits (ENOB) was above 14. The experimental performance of the ΣΔ modulator maintains a good level over a modulator clock range higher than 16 MHz, featuring an ENOB equal to 13 at 16 MHz.  相似文献   

14.
A low power (9 mW) highly-digitized 2.4 GHz receiver for sensor network applications (IEEE 802.15.4 LR-WPAN) is realized by a 0.18 $mu{rm m}$ CMOS process. We adopted a novel receiver architecture adding an intermediate frequency (IF) level detection scheme to a low-power complex fifth-order continuous-time (CT) bandpass $SigmaDelta$ modulator in order to digitalize the receiver. By the continuous-time bandpass architecture, the proposed $SigmaDelta$ modulator requires no additional anti-aliasing filter in front of the modulator. Using the IF detector, the achieved dynamic range (DR) of the overall system is 95 dB at a sampling rate of 64 MHz. This modulator has a bandwidth of 2 MHz centered at 2 MHz. The power consumption of this receiver is 9.0 mW with a 1.8 V power supply.   相似文献   

15.
A delta-sigma (/spl Delta//spl Sigma/) analog-to-digital converter featuring 68-dB dynamic range and 64-dB signal-to-noise ratio in a 1-MHz bandwidth centered at an intermediate frequency of 2 MHz with a 48-MHz sample rate is reported. A second-order continuous-time modulator employing 4-bit quantization is used to achieve this performance with 2.2 mW of power consumption from a 1.8-V supply. The modulator including references occupies 0.36 mm/sup 2/ of die area and is implemented in a 0.18-/spl mu/m five-metal single-poly digital CMOS process.  相似文献   

16.
In this research a novel low power multi-mode continuous time Delta Sigma modulator was designed to be compatible with many mobile wireless standards. This modulator has a reconfigurable structure to adapt to various standards from 0.2 to 20 MHz. The designed modulator uses a VCO-based quantizer not only for lowering power consumption, but also for reducing the required chip area. The presented modulator can function with up to third order of noise shaping, or in a low power mode in which the loop filter is disabled and only the VCO-based quantizer is used. The proposed modulator was implemented and simulated in transistor level in 180 nm technology. This modulator can digitize at least seven standards (LTE (20 MHz)/WLAN/LTE (9 MHz)/WCDMA/UMTS/Bluetooth/GSM) with a favorable dynamic range (65–89 dB) and power consumption (9.1 mW–670 μW).  相似文献   

17.
A KD*P internal coupling modulator has been operated in a high-power single-frequency 0.63-micron He-Ne laser similar to that described earlier by Smith. It is shown that distortion in the output due to resonant buildup of energy in the passive cavity modes when the modulation frequency is equal toc/2Lcan be reduced to an acceptable level. The modulator bandwidth was greater than 700 MHz, and the maximum optical output power was 3.6 mW. For an optical output power of 0.5 mW, the performance index was estimated to be 0.4 mW of RF driving power for each MHz of bandwidth.  相似文献   

18.
A rotating-waveplate optical frequency shifter using lithium niobate (LiNbO3) has been constructed and fully evaluated. The experimental modulator frequency shifts the incoming 6328-Å light by 110 MHz, requires 15 W of drive power, and has an inherent 12-MHz bandwidth. The output beam has high spectral purity with very little power in unwanted sidebands and closely matches the TEM00mode of the input beam. An analysis of the effects of electrical and optical maladjustments on modulator performance shows only moderate requirements on optical and electrical alignment. Heating due to the absorbed drive power slightly degrades the modulator in agreement with a temperature analysis of the modulator. An increase in insertion loss due to diffraction of the light by acoustic waves in the LiNbO3crystal was observed.  相似文献   

19.
A wide bandwidth continuous time sigma delta analog-to-digital conversion is implemented in 130?nm process. The circuit is targeted for wide bandwidth applications such as video or wireless base-stations. The third-order continuous time sigma delta modulator comprises a third-order RC operational-amplifier-based loop filter and 3-bit internal quantizer operated at 512?MHz clock frequency. To reduce the clock jitter sensitivity, nonreturn-to-zero DAC pulse shaping is used. The excess loop delay is set to half the sampling period of the quantizer, and the degradation of modulator stability due to excess loop delay is avoided with this architecture. The sigma delta ADC achieves a 60?dB SNR and a 59.3?dB signal-to-noise-plus-distortion ratio over a 16?MHz signal band at an oversampling ratio of 16. The power consumption of the continuous time sigma delta modulator is 22 mW from the 1.2?V supply.  相似文献   

20.
李冉  李婧  易婷  洪志良 《半导体学报》2012,33(1):015007-7
本文在130纳米CMOS工艺下实现了一种具有20兆赫兹带宽,四阶连续时间型过采样调制器。调制器由有源积分环路滤波器、4位内部量化器和3个电流舵型反馈数模转换器构成。本文提出了一种三级运算放大器,它可以在获得高带内增益和高带宽的同时消耗较小的功耗。为了减小时钟抖动对连续时间型过采样调制器的影响,内部反馈数模转化器采用了不自归零的反馈波形。同时采用特殊的版图技术保证数模转换器的线性度,同时避免使用动态器件匹配技术引入的额外环路延时。芯片工作在1. 2 V 电源电压和480 M Hz 时钟频率, 在20 MHz 的信号带宽内, 调制器的动态范围为66 dB, 峰值SNR为64.6 dB, 功耗为18 mW。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号