首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The combined ADEPT (Anaerobic Digestion Elutriated Phased Treatment)- SHARON (Single reactor system High Ammonium Removal Over Nitrite)--ANAMMOX (Anaerobic Ammonium Oxidation) processes were operated for the purpose of resource recovery and nitrogen removal from slurry-type piggery waste. The ADEPT operated at acidogenic loading rates of 3.95 gSCOD/L-day, the SCOD elutriation rate and acid production rate were 5.3 gSCOD/L-day and 3.3 gVFAs(as COD)/L-day, respectively. VS reduction and SCOD reduction by hydrolysis were 13% and 0.19 gSCOD(prod.)/gVS(feeding), respectively. Also, the acid production rate was 0.80 gVFAs/gSCOD(production). In the methanogenic reactor, the gas production rate and methane content were 2.8 L/day (0.3 m3CH4/kgCOD(removal)STP) and 77%, respectively. With these operating condition, the removal of nitrogen and phosphorus were 94.1% as NH4-N (86.5% as TKN) and 87.3% as T-P, respectively.  相似文献   

2.
This study was performed to optimize both acidogenic hydrogenesis and methanogenesis, and then to develop a pilot-scale two-stage process producing not only CH4 but also H2. Firstly, acidogenic hydrogenesis of food waste was examined in pilot-scale leaching-bed reactors using dilution rate (D) as a tool to improve the environmental conditions. The maximum efficiency of 71.4% was obtained by adjusting D from 4.5 to 2.5 d(-1) depending on the state of degradation. Secondly, the wastewater from acidogenic hydrogenesis was converted to CH4 in a pilot-scale UASB reactor. The COD removal efficiency exceeded 95% up to the loading rates of 13.1 g COD/Ld, which corresponded to HRT of 0.25 d (6 h). Lastly, a pilot-scale two-stage process was devised based on a combination of acidogenic hydrogenesis and methanogenesis. Over 120 days, the pilot-scale process resulted in large VS reduction of 70.9% at the high loading rate of 12.5 kg VS/m3/d in a short SRT of 8 days.  相似文献   

3.
Sustainable operation of an anaerobic sewage sludge digester requires the effective shuttling of carbon from complex organic material to methane gas. The accumulation of intermediates and metabolic products such as volatile fatty acids and hydrogen gas not only reveal inefficiency within the digestion process, but can be detrimental to reactor operation at sufficiently high levels. Eight anaerobic digesters (1 mesophilic and 7 thermophilic) were operated in order to determine the effect of steady-state digestion temperature on the operational stability and performance of the digestion process. Replicate reactors operated at 57.5 degrees C, the highest temperature studied, were prone to accumulation of volatile fatty acids (4052 and 3411 mg/L as acetate) and gaseous hydrogen. Reactors operated at or below 55 degrees C showed no such accumulation of intermediate metabolites. Overall methanogenesis was also greatly reduced at 57.5 degrees C (0.09 L CH4/g VS fed) versus optimal methane formation at 53 degrees C (0.40 L CH4/g VS fed). Microbial community assessment and free energy calculations suggest that the accumulation of fatty acids and hydrogen, and relatively poor methanogenic performance at 57.5 degrees C are likely due to temperature limitations of thermophilic aceticlastic methanogens.  相似文献   

4.
One of the major challenges of anaerobic technology is its applicability for low strength wastewaters, such as sewage. The lab-scale design and performance of a novel Gradual Concentric Chambers (GCC) reactor treating low (165+/-24 mg COD/L) and medium strength (550 mg COD/L) domestic wastewaters were studied. Experimental data were collected to evaluate the influence of chemical oxygen demand (COD) concentrations in the influent and the hydraulic retention time (HRT) on the performance of the GCC reactor. Two reactors (R1 and R2), integrating anaerobic and aerobic processes, were studied at ambient (26 degrees C) and mesophilic (35 degrees C) temperature, respectively. The highest COD removal efficiency (94%) was obtained when treating medium strength wastewater at an organic loading rate (OLR) of 1.9 g COD/L.d (HRT = 4 h). The COD levels in the final effluent were around 36 mg/L. For the low strength domestic wastewater, a highest removal efficiency of 85% was observed, producing a final effluent with 22 mg COD/L. Changes in the nutrient concentration levels were followed for both reactors.  相似文献   

5.
Nightsoil and piggery wastes generally present high strength organics and nitrogen. This study evaluated the nitrogen removal characteristics with the existing and modified nightsoil and piggery waste treatment plants. The existing conventional plants showed 20 to 40% nitrogen removal, but the modification with SBR or MLE process could remove effectively both nitrogen and organics with the minimum COD/TN and alkalinity/TN ratios of 6 and 3.6, respectively. Nitrite nitrification and denitrification rates obtainable at higher nitrogen loads were faster than the rates of nitrate nitrification and denitrification resulting in less reactor volume requirement. However, the higher nitrogen loads increased the organic loads resulting in the reactor temperature inhibiting nitrification. Thus, a combined treatment with anaerobic digestion with the adjustment of influent bypass rates was proposed to reduce the reactor temperature and the external carbon requirement. The biological treatment could discharge about 1,100 mg/L soluble COD and 50 mg/L soluble nitrogen, respectively.  相似文献   

6.
In this paper, a novel process for organic acids and nutrient recovery from municipal sludge was introduced and evaluated based on laboratory-scale studies. An economical estimation for its practical application was also performed by mass balance in a full-scale plant (Q=158,000 m3 d(-1)). This novel process comprises an upflow sludge blanket-type high performance elutriated acid fermenter (5d of SRT) for organic acids recovery followed by an upflow-type crystallisation (3 h of HRT) reactor using waste lime for nutrient recovery. In the system, the fermenter is characterised by thermophilic (55 degrees C) and alkaline conditions (pH 9), contributing to higher hydrolysis/acidogenesis (0.18 g VFA(COD) g(-1) VSS(COD), 63.3% of VFA(COD)/COD produced, based on sludge characteristics of the rainy season) and pathogen-free stabilised sludge production. It also provides the optimal condition for the following crystallisation reactor. In the process, the waste lime, which is an industrial waste, can be used for pH control and cation (Ca and Mg) sources for crystallisation reaction. A cost estimation for full-scale application demonstrates that this process has economic benefits (about 67 dollars per m3 of wastewater except for the energy expense) even in the rainy season.  相似文献   

7.
The effects of increasing nitrobenzene (NB) concentrations and hydraulic retention time (HRT) on the performance of anaerobic baffled reactor (ABR) and aerobic completely stirred tank reactor (CSTR) were studied. In the first step the NB concentration was increased from 30 to 700 mg/L at constant COD and flowrates. Maximum COD removal efficiencies in ABR varied between 88-92% as NB concentrations increased from 30 to 210 mg/L. After this dose, COD removal efficiency decreased to 85 and 79% at NB concentrations of 550 and 700 mg/L, respectively. Removal efficiencies of NB were nearly 100% for all NB concentrations in ABR reactor effluent. In the second step, COD and NB concentrations were kept constant while HRT decreased from 10.38 days to 1 day. As HRT decreased from 10.38 to 2.5 days the COD removal efficiencies in the anaerobic and anaerobic/aerobic reactor effluents were 92-94% and 97-98%, respectively. As HRT decreased from 2.5 days to 1 day COD removal efficiencies in the anaerobic and anaerobic/aerobic reactor effluents decreased to 83 and 95%, respectively. This study showed that HRT is a more important operation parameter than increasing NB concentration in ABR/CSTR sequential reactor system. Although ABR/CSTR system exhibited good COD and NB removal efficiencies, the lower HRTs slightly decreased the removal efficiencies compared to increasing NB concentration.  相似文献   

8.
Nitrogen removal from a piggery wastewater was investigated in a post-denitrification modified Lüdzack Ettinger (PDMLE) process. Overall hydraulic retention time (HRT) of the PDMLE, consisting of contact/separator (C/S), nitrification, denitrification and re-aerobic bioreactor was 10 days. 60% of the influent SCOD was separated in the C/S by contacting the return sludge with the synthetic wastewater, however, only 10% of the influent SCOD was separated from the piggery wastewater. Biosorption capacities of the synthetic wastewater and piggery wastewater were 800 and 150 mg/g-MLSS, respectively. In spite of the high organic and nitrogen load, nitrification efficiency was above 95%, and nitrification rate was about 180 mg-NH4+-N/L x day. The removed delta COD/delta nitrate ratios in the denitrification tank were 4.0 and 11.5 g-SCOD/g-nitrate, while denitrification rates were 8.4 and 2.6 mg-nitrate/day for synthetic and piggery wastewater, respectively. In the proposed PDMLE process, both bio-sorbed and bypassed organic matter could be successfully used for nitrate reduction as carbon sources and the final TN removal efficiency was as high as 95%.  相似文献   

9.
The anaerobic ammonium removal from a piggery waste with high strength (56 g COD/L and 5 g T-N/L) was investigated using a lab-scale upflow anaerobic sludge bed reactor at a mesophilic condition. Based on the nitrogen and carbon balance in the process, the contribution of autotrophic and heterotrophic organisms was also evaluated in terms of the influent NO2-N/NH4-N ratio (1:0.8 and 1:1.2 for Phase 1 and Phase 2, respectively). The result of this research demonstrates that the anaerobic ammonium removal from the piggery waste, using the UASB reactor, can be performed successfully. Furthermore, it appears that by using granular sludge as the seed biomass, the ANAMMOX reaction can start more quickly. Average nitrogen conversion was 0.59 kg T-N/m3 reactor-day (0.06 kg T-N/kg VSS/day) and 0.66 kg T-N/m3 reactor-day (0.08 kg T-N/kg VSS/day) for Phase 1 and Phase 2. The NO2-N/NH4-N removal ratio by the ANAMMOX was 1.48 and 1.79 for Phase 1 and Phase 2. The higher nitrite contents (about 50%) in the substrate resulted in higher nitrite nitrogen removal by the partial denitritation, as well as the ANAMMOX reaction, implying higher potential of partial denitritation. However, the result reveals that the ANAMMOX reaction was influenced less by the degree of partial denitritation, and the ANAMMOX bacteria did not compete with denitritation bacteria. The colour of the biomass at the bottom of the reactor changed from dark gray to dark red, which was accompanied by an increase in cytochrome content. At the end of the experiment, red-coloured granular sludge with diameter of 1-2 mm at the lower part of the reactor was also observed.  相似文献   

10.
A two-stage thermophilic-mesophilic anaerobic digestion pilot-plant was operated solely on waste activated sludge (WAS) from a biological nutrient removal (BNR) plant. The first-stage thermophilic reactor (HRT 2 days) was operated at 47, 54 and 60 degrees C. The second-stage mesophilic digester (HRT 15 days) was held at a constant temperature of 36-37 degrees C. For comparison with a single-stage mesophilic process, the mesophilic digester was also operated separately with an HRT of 17 days and temperature of 36-37 degrees C. The results showed a truly thermophilic stage (60 degrees C) was essential to achieve good WAS degradation. The lower thermophilic temperatures examined did not offer advantages over single-stage mesophilic treatment in terms of COD and VS removal. At a thermophilic temperature of 60 degrees C, the plant achieved 35% VS reduction, representing a 46% increase compared to the single-stage mesophilic digester. This is a significant level of degradation which could make such a process viable in situations where there is no primary sludge generated. The fate of the biologically stored phosphorus in this BNR sludge was also investigated. Over 80% of the incoming phosphorus remained bound up with the solids and was not released into solution during the WAS digestion. Therefore only a small fraction of phosphorus would be recycled to the main treatment plant with the dewatering stream.  相似文献   

11.
The objective of this research was to study the dechlorination of 1,2-dichloroethane (1,2-DCA) in a synthetic wastewater with lab-scale anaerobic sequencing batch (ASBR) reactors. Anaerobic sludge was used as a biocatalyst. Sodium acetate and dextrose served as the main methanogenic substrate. Experimental studies were conducted at wide-range of volumetric (0.25-1.25 g COD/L.d) and specific (0.0362-0.181 g COD/ g VSS.d) loading rates and influent wastewater CODs (500-2500 mg/L). During 266 days of reactor operation, the mixed culture degraded 1,2 dichloroethane at concentrations of up to 50 mg/L, with an HRT of 48 hrs. No chlorinated intermediates or residues were found. 1,2-DCA degradation resulted in ethene and ethane formation. Acetate was the most effective electron donor for dechlorination, although, dextrose was also effective, but to a lesser extent. The mixed culture degraded 1,2 Dichloroethane in the temperature range of 28+/-4 degrees C, with the pH range of 7.25 to 7.95. The 1,2-DCA removal rates achieved, and the safe nature of the end products, signify the anaerobic sequencing batch (ASBR) reactor technology for practical decontamination of waters containing such types of organochlorines. The COD removal efficiencies were in the range of 95 to 98% depending on volumetric and specific loading rates applied.  相似文献   

12.
A 2.0 L volume of EGSB reactor was operated at 20 degrees C for more than 500 days with 0.3-0.4 g COD/L of sucrose base wastewater to investigate the influence of effluent-recirculation on the process performance. At the start up period, the reactor was operated in EGSB mode with 5 m/h upflow velocity by continuous effluent recirculation. The COD loading was set to 7.2-9.6 kg COD/m(3) day with HRT of 1 hour. However, in this mode, EGSB reactor exhibited insufficient COD removal efficiency, i.e., 50-60%. Therefore, UASB mode (without recirculation, 0.7 m/h upflow velocity) was used for 30 minutes in every 40 minutes cycle to increase the COD concentration in the sludge bed. As a result, an excellent process performance was shown. The COD removal efficiency increased from 65% to 91% and the reactor could maintain a good physical property of retained sludge (sludge concentration: 33.4 g VSS/L and SVI: 25 mL/g VSS). Furthermore, retained sludge possessed sufficient level of methanogenic activity at 20 degrees C.  相似文献   

13.
Nitrogen removal from piggery waste with anaerobic pretreatment.   总被引:1,自引:0,他引:1  
Aerobic degradation of high strength piggery waste elevated the reactor temperature inhibiting nitrification. This study included anaerobic pretreatment with various influent by-pass rates to control the temperature and to minimize the external carbon requirement for denitrification. To find the optimum operating conditions, both lab-scale AnSBR (anaerobic sequencing batch reactor) and Ax/Ox (anoxic/oxic) SBR were operated at 35 degrees C. The heat energy released from Ax/Ox SBR was assumed to be used for heating the AnSBR, with which the Ax/Ox reactor temperature could successfully be controlled below 40 degrees C. The optimum rates of by-pass were 1.0 for winter, 0.4 for spring/fall and 0.2-0.4 for summer, respectively. Applying the correction factors for the measured AUR2 (nitrite nitrification rate) and AUR (nitrate nitrification) at the predicted temperatures, the required oxic HRTs were computed. The required Ax/Ox HRT ratios were respectively 0.5 for COD/TKN>8, 1.0 for COD/TKN ratio of 5.5-8 and 3.5 for below 5.5. The optimum HRTs were 16 days for AnSBR and 17 days for Ax/Ox SBR with the corrected AUR2.  相似文献   

14.
A two-stage entrapped mixed microbial cell ((2S)EMMC) process which separates nitrification and denitrification phases by the installation of the anoxic and oxic EMMC reactors packed with EMMC carriers was operated with 6, 4, 3, and 2 hours of hydraulic retention time (HRT) using simulated domestic wastewater. The activated sludge was immobilized using cellulose acetate for the EMMC carriers. Similar soluble chemical oxygen demand (SCOD) removal efficiencies of 90-97% were observed for all HRTs (SCOD loading rate of 0.84-2.30 g/L/d) applied. In order to achieve more than 80% of TN removal efficiency, the HRT should be maintained higher than 4 hours (less than 0.24 g/L/d of TN loading rate). Denitrification was a rate-limiting step which controlled overall TN removal efficiency at TN loading rate of 0.15-0.31 g/L/d although nitrification efficiencies achieved 97-99%. The effluent TSS of less than 25 mg/L in the (2S)EMMC process was maintained at the SCOD loading rate of less than 1.23 g/L/d with back-washing intervals of 5 and 10 days in the anoxic and oxic EMMC reactors, respectively. The minimum HRT of 4 hours is required for high removal efficiencies of organics (average 95.6%) and nitrogen (average 80.5%) in the (2S)EMMC process with 3 times of recirculation ratio.  相似文献   

15.
The performance of an anaerobic mesophilic packed bed reactor, with a mixture of GAC and tezontle, followed by an aerobic suspended growth system was studied for the treatment of organic chemical wastewater with a high COD concentration (22-29 g/L). The testing of the anaerobic-aerobic system was conducted in an experimental set-up for almost 2.5 years. Different operational conditions were evaluated. The anaerobic reactor showed performance stability and COD removals higher than 80% were obtained with loads up to 16.6 kg x m(-3) x d(-1). The acclimation of the aerobic biomass to the substrate in the anaerobic effluent was very quick and COD removals higher than 94% were obtained even at high organic loads. The combined anaerobic-aerobic system allowed total COD removals higher than 99.5% and the accomplishment of the discharge requirements of 200 mgCOD/L when the anaerobic reactor was operated with loads of 8-11 kg x m(-3)x d(-1) and the aerobic reactor with 0.33 kg x kg(-1) x d(-1), being the total HRT of 4.4. The average TKN removal in the anaerobic-aerobic system was 97%, the average for the anaerobic reactor being 52% and that one for the aerobic system being 94%.  相似文献   

16.
The process of anaerobic thermophilic digestion of municipal wastewater sludge with a recycled part of thickened digested sludge, was studied in semi-continuous laboratory digesters. This modified recycling process resulted in increased solids retention time (SRT) with the same hydraulic retention time (HRT) as compared with traditional digestion without recycling. Increased SRT without increasing of HRT resulted in the enhancement of volatile substance reduction by up to 68% in the reactor with the recycling process compared with 34% in a control conventional reactor. Biogas production was intensified from 0.3 L/g of influent volatile solids (VS) in the control reactor up to 0.35 L/g VS. In addition, the recycling process improved the dewatering properties of digested sludge.  相似文献   

17.
Continuous Stirred Tank Reactors (CSTRs), operated in batch mode, were used to evaluate the feasibility of psychrophilic (low temperature) digestion of perennial rye grass in a long term experiment (150 days) for the first time. The reactors were operated in parallel at 3 different temperatures, 10, 15 and 37 degrees C. Hydrolysis, acidification and methanogenesis were assessed by VS degradation, by soluble chemical oxygen demand (SCOD) and volatile fatty acids (VFA) production, and by methane production, respectively. Hydrolysis was the rate-limiting step at all temperatures and the rates and extent of hydrolysis were considerably lower at 15 and 10 degrees C, than at 37 degrees C. The total VS degradation was 53%, 34% and 19% at 37, 15 and 10 degrees C, respectively. Acidification was not affected by temperature and VFA production and consumption was balanced in all cases, except at 10 degrees C. Methane yields were 0.215 m3 CH4 kg(-1) VS(-1) added, 0.160 m3 CH4 kg(-1) VS(-1) added and 0.125 m3 CH4 kg(-1) VS(-1) added at 37, 15 and 10 degrees C, respectively. Methanogenesis was not strongly affected at 15 C but it became rate-limiting at 10 degrees C. Overall, the solid degradation and methane production performance under psychrophilic conditions was encouraging and greater than previously reported. Considering the non-acclimated, mesophilic nature of the inoculum, there are grounds to believe that low-temperature anaerobic digestion of grass could be feasible if coupled to efficient hydrolysis of the biomass.  相似文献   

18.
The sustainable anaerobic nitrogen removal and microbial granulation were investigated by using a laboratory anaerobic granular sludge bed reactor, treating synthetic (inorganic and organic) wastewater and piggery waste. From inorganic synthetic wastewater, lithoautotrophic ammonium oxidation to nitrite/nitrate was observed by an addition of hydroxylamine. Also, the results revealed that the Anammox intermediates (particularly, hydrazine) contents in the substrate would be one of the important parameters for success of the anaerobic nitrogen removal process. The results from organic synthetic wastewater show that if the Anammox organism were not great enough in the startup of the process, denitritation and anaerobic ammonification would be a process prior to the Anammox reaction. The anaerobic ammonium removal from the piggery waste was performed successfully, probably due to the Anammox intermediates contained in the substrate. This reactor shows a complex performance including the Anammox reaction and HAP crystallization, as well as having partial denitritation occurring simultaneously. From the activity test, the maximum specific N conversion rate was 0.1 g NH4-N/g VSS/day (0.77 g T-N/g VSS/day), indicating that potential denitritation is quite high. The NO2-N/NH4-N ratio to Anammox is 1.17. The colour of the biomass treating the piggery waste changed from black to dark red. It was also observed that the red-colored granular sludge had a diameter of 1-2 mm. The settleability assessment of the granular sludge revealed that the granular sludge had a good settleability even though it was worse than that of seed granular sludge.  相似文献   

19.
A 9.8-L hybrid UASFB reactor, in which the lower half was occupied by a sludge blanket and the upper half by small floating polyethylene media, was evaluated using wine distillery vinasse as substrate. The reactor was operated for a total period of 232 days at 33 + 1 degrees C. Continuous feeding of the reactor was started with an initial OLR of 2.9 g COD/L.d and then it was increased step wise to 19.5 g COD/L.d by increasing the feed COD, while maintaining a constant HRT (1.05 d). The reactor was equipped with a continuous internal recirculation system from top to the bottom at the rate of 9 L/h (upflow velocity = 0.83 m/h) upto day 159 and then it was reduced to about half on day 160 onwards. It was observed that the reduced recirculation rate did not affect the performance of the reactor with an average COD(t) and COD(s) removal efficiencies of 82 and 88%, respectively. A maximum gas production rate of 6.7 L CH(4)/L(reactor).d was achieved for the highest OLR applied. The specific activity analysis depicts that the activity of the attached biomass was more than 2 times higher than that of the granular sludge. The efficiency of liquid mixing was good through out this study. The packing medium had a dual role in the retention of the biomass inside the reactor: i.e. entrapment of biomass within the support and filtration of the granular biomass, preventing it from going out of the reactor. ADM1_10 model simulated well the dynamic evolutions of the main variables in the liquid as well as in the gas phases.  相似文献   

20.
Previously, we found that the newly isolated Clostridium sp. strain JC3 became the dominant cellulose-degrading bacterium in thermophilic methanogenic sludge. In the present study, the behavior of strain JC3 in the thermophilic anaerobic digestion process was investigated quantitatively by molecular biological techniques. A cellulose-degrading experiment was conducted at 55 degrees C with a 9.5 L of anaerobic baffled reactor having three compartments (Nos. 1, 2, 3). Over 80% of the COD input was converted into methane when 2.5 kgCOD m(-3) d(-1) was loaded for an HRT of 27 days. A FISH probe specific for strain JC3 was applied to sludge samples harvested from the baffled reactor. Consequently, the ratio of JC3 cells to DAPI-stained cells increased from below 0.5% (undetectable) to 9.4% (compartment 1), 13.1% (compartment 2) and 21.6% (compartment 3) at day 84 (2.5 kgCOD m(-3)d(-1)). The strain JC3 cell numbers determined by FISH correlated closely with the cellulose-degrading methanogenic activities of retained sludge. A specific primer set targeting the cellulase gene (cellobiohydrolaseA: cbhA) of strain JC3 was designed and applied to digested sludge for treating solid waste such as coffee grounds, wastepaper, garbage, cellulose and so on. The strain JC3 cell numbers determined by quantitative PCR correlated closely with the cellulose-sludge loading of the thermophilic digester. Strain JC3 is thus important in the anaerobic hydrolysis of cellulose in thermophilic anaerobic digestion processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号