首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
New enhanced boiling tubes from Wolverine Tube Inc. (Turbo-B5) and Wieland-Werke AG (Gewa-B5) were investigated using R-134a and R-236fa as test fluids. The tests were done at saturation temperatures of 5 and 15 °C, mass flow rates from 4 to 35 kg m−2 s−1 and heat fluxes from 15 to 70 kW m−2. A new prediction method based on a theoretical analysis of thin film evaporation was used to propose a new correlating parameter. A large new database of local heat transfer coefficients was obtained and utilized to generate an improved prediction method for bundle boiling and the onset of dryout. Onset of dryout and the simultaneous reduction in heat transfer performance occurred at very high vapour quality on these enhanced tubes in convective bundle boiling. Furthermore, a direct comparison was made between the tubes operating in falling film and convective bundle boiling modes.  相似文献   

2.
This study presents 238 pressure drop data points measured for two-phase flow of R-410A in horizontal return bends. The tube diameter (D) varies from 7.90 to 10.85 mm and the curvature ratio (2R/D) from 3.68 to 4.05. The mass velocity ranges from 179 to 1695 kg m−2 s−1 and the saturation temperatures from 4.6 °C to 20.7 °C. Preliminary tests show that the recovery length necessary for a correct pressure drop measurement downstream of the return bend is less than 20D, for the experimental conditions covered in this study. The singular pressure drop is determined by subtracting the regular pressure drop in straight tube from the total pressure drop. The experimental data are compared against four available correlations found in the literature. The present experimental database for the return bend pressure drop is presented in the Appendix A.  相似文献   

3.
Two-phase pressure drop of R-410A in horizontal smooth minichannels   总被引:2,自引:0,他引:2  
Convective boiling pressure drop experiments were performed in horizontal minichannels with a binary mixture refrigerant, R-410A. The test section was made of stainless steel tubes with inner diameters of 1.5 mm and 3.0 mm and with lengths of 1500 mm and 3000 mm, respectively. This test section was uniformly heated by applying electric current directly to the tubes. Experiments were performed at inlet saturation temperature of 10 °C, mass flux ranges from 300 to 600 kg m−2 s−1 and heat flux ranges from 10 to 40 kW m−2. The current study showed the significant effect of mass flux and tube diameter on pressure drop. The experimental results were compared against 15 two-phase pressure drop prediction methods. The homogeneous model predicted well the experimental pressure drop, generally. A new pressure drop prediction method based on the Lockhart–Martinelli method was developed with 4.02% mean deviation.  相似文献   

4.
Pressure drop for propane and isobutane were performed in a horizontal small tube of stainless steel with 1.0 mm inner diameter. The tests were conducted at mass fluxes from 240 to 480 kg m−2s−1 and heat fluxes from 5 to 60 kW m−2 at 25 °C saturation temperature. The effect of flow patterns, mass flux, vapour quality and heat flux are discussed. Strong influence of mass flux and vapour quality on pressure drop was found. The comparisons of experimental data with predicted value proposed by existing correlations available in literature for pressure drop are analyzed.  相似文献   

5.
The evaporation heat transfer coefficient and pressure drop of R-410A flowing through a horizontal aluminium rectangular multiport mini-channel having 3.48 mm hydraulic diameter are experimentally investigated. The test runs are performed at mass flux ranging between 200 and 400 kg/m2 s. The heat fluxes are between 5 and 14.25 kW/m2 and the saturation temperatures range between 10 and 30 °C. The pressure drop across the test section is directly measured by a differential pressure transducer. The effects of the imposed wall heat flux, mass flux, vapour quality, and saturation temperature on the evaporation heat transfer and pressure drop are also discussed. The results from the present experiment are compared with those obtained from the existing correlation. New correlations for the evaporation heat transfer coefficient and pressure drop of R-410A flowing through a multiport mini-channel are proposed for practical applications.  相似文献   

6.
This paper presents a study of flow regimes, pressure drops, and heat transfer coefficients during refrigerant condensation inside a smooth, an 18° helical micro-fin, and a herringbone tubes. Experimental work was conducted for condensing refrigerants R-22, R-407C, and R-134a at an average saturation temperature of 40 °C with mass fluxes ranging from 400 to 800 kg m−2 s−1, and with vapour qualities ranging from 0.85 to 0.95 at condenser inlet and from 0.05 to 0.15 at condenser outlet. These test conditions represent annular and intermittent (slug and plug) flow conditions. Results showed that transition from annular flow to intermittent flow, on average for the three refrigerants, occurred at a vapour quality of 0.49 for the smooth tube, 0.29 for the helical micro-fin tube, and 0.26 for the herringbone tube. These transition vapour qualities were also reflected in the pressure gradients, with the herringbone tube having the highest pressure gradient. The pressure gradients encountered in the herringbone tube were about 79% higher than that of the smooth tube and about 27% higher than that of the helical micro-fin tube. A widely used pressure drop correlation for condensation in helical micro-fin tubes was modified for the case of the herringbone tube. The modified correlation predicted the data within a 1% error with an absolute deviation of 7%. Heat transfer enhancement factors for the herringbone tube against the smooth tube were on average 70% higher while against the helical micro-fin tube it was 40% higher. A correlation for predicting heat transfer coefficients inside a helical micro-fin tube was modified for the herringbone tube. On average the correlation predicted the data to within 4% with an average standard deviation of 8%.  相似文献   

7.
The flow boiling heat transfer coefficient of the low-GWP (global warming potential) refrigerant HFO-1234yf inside a smooth small-diameter horizontal tube (inner diameter: 2 mm) was experimentally investigated. The local heat transfer coefficient was measured at heat fluxes of 6-24 kW m−2, mass fluxes of 100-400 kg m−2 s−1, an evaporating temperature of 288.15 K, and an inlet vapor quality of 0-0.25. The results show that the effect of heat flux on the heat transfer was large at low vapor quality, while the effect of mass flux was large at high vapor quality. The heat transfer coefficient of HFO-1234yf was almost the same as that of R-134a. The heat transfer coefficients calculated based on correlations with Saitoh et al. agreed well with the measured values compared to other correlations. The measured pressure drop agreed well with that predicted by the Lockhart-Martinelli correlation.  相似文献   

8.
This paper reports an experimental investigation of convective boiling heat transfer and pressure drop of refrigerant R-134a in smooth, standard microfin and herringbone copper tubes of 9.52 mm external diameter. Tests have been conducted under the following conditions: inlet saturation temperature of 5 °C, qualities from 5 to 90%, mass velocity from 100 to 500 kg s−1 m−2, and a heat flux of 5 kW m−2. Experimental results indicate that the herringbone tube has a distinct heat transfer performance over the mass velocity range considered in the present study. Thermal performance of the herringbone tube has been found better than that of the standard microfin in the high range of mass velocities, and worst for the smallest mass velocity (G=100 kg s−1 m−2) at qualities higher than 50%. The herringbone tube pressure drop is higher than that of the standard microfin tube over the whole range of mass velocities and qualities. The enhancement parameter is higher than one for both tubes for mass velocities lower than 200 kg s−1 m−2. Values lower than one have been obtained for both tubes in the mass velocity upper range as a result of a significant pressure drop increment not followed by a correspondent increment in the heat transfer coefficient.  相似文献   

9.
CO2 flow condensation heat transfer coefficients and pressure drop are investigated for 0.89 mm microchannels at horizontal flow conditions. They were measured at saturation temperatures of −15 and −25 °C, mass fluxes from 200 to 800 kg m−2 s−1, and wall subcooling temperatures from 2 to 4 °C. Flow patterns for experimental conditions were predicted by two flow pattern maps, and it could be predicted that annular flow patterns could exist in most of flow conditions except low mass flux and low vapor quality conditions. Measured heat transfer coefficients increased with the increase of mass fluxes and vapor qualities, whereas they were almost independent of wall subcooling temperature changes. Several correlations could predict heat transfer coefficients within acceptable error range, and from this comparison, it could be inferred that the flow condensation mechanism in 0.89 mm channels should be similar to that in large tubes. CO2 two-phase pressure drop, measured in adiabatic conditions, increased with the increase of mass flux and vapor quality, and it decreased with the increase of saturation temperature. By comparing measured pressure drop with calculated values, it was shown that several correlations could predict the measured values relatively well.  相似文献   

10.
An experimental study was conducted on a 19.05 mm (outer diameter) dimpled enhanced tube to evaluate the in-tube two phase heat transfer and pressure drop performance in an annular section created between the enhanced tube and a solid round PVC rod. The purpose of the study was to understand the effect of forced early transition to annular flow on the pressure drop and heat transfer coefficient in a horizontal tube. The refrigerant studied was R-134a at a saturation temperature of 5 °C, heat flux range 2.5 to 15 kW m−2, mass flux from 80 to 200 kg m−2 s−1 and inlet vapor quality of 0.12 to 0.72. Flow pattern and pressure drop results were obtained under adiabatic conditions. Under similar operating conditions the enhanced tube with a rod exhibited three times higher heat transfer performance versus same size smooth empty tube with lower pressure drop penalty at lower mas flux.  相似文献   

11.
An experimental study has been carried out on the heat transfer enhancement and pressure drop characteristics in presence of twisted tape inserts, during flow boiling of R-134a, inside a horizontal evaporator. The test-evaporator was an electrically heated 1260 mm long copper tube with 7.5 mm inside diameter. The experiments were performed for plain flow and four tubes with twisted tapes of 6, 9, 12 and 15 twist ratios and four refrigerant mass velocities of 54, 85, 114 and 136 kg/s m2 for each tape. It has been found that the twisted tape inserts enhance the heat transfer coefficient on relatively higher pressure drop penalty, in comparison to that for the plain flow.  相似文献   

12.
In order to evaluate the validity of prediction tools for two-phase flow pressure drops for conditions of high saturation temperatures, this paper focuses on the comparison between new experimental results and theoretical results predicted with the commonly used methods. The original dataset was obtained in a horizontal 3.00 mm inner diameter during adiabatic flow with R-245fa as working fluid. The mass velocity ranges from 100 to 1500 kg m−2 s−1, the saturation temperature varies from 60 to 120 °C and the inlet vapor quality from 0 to 1. The database is composed of 249 data points covering four flow patterns: (i) intermittent flow, (ii) annular flow, (iii) dryout flow, and (iv) mist flow regimes. The dataset is compared against 23 well-known two-phase frictional pressure drop prediction methods. The effect of the saturation temperature and of the flow pattern on the ability of the methods to predict the frictional pressure drop was pointed out.  相似文献   

13.
The objective of this paper is to investigate the effect of nanoparticle on the frictional pressure drop characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube, and to present a correlation for predicting the frictional pressure drop of refrigerant-based nanofluid. R113 refrigerant and CuO nanoparticle were used for preparing refrigerant-based nanofluid. Experimental conditions include mass fluxes from 100 to 200 kg m?2 s?1, heat fluxes from 3.08 to 6.16 kW m?2, inlet vapor qualities from 0.2 to 0.7, and mass fractions of nanoparticles from 0 to 0.5 wt%. The experimental results show that the frictional pressured drop of refrigerant-based nanofluid increases with the increase of the mass fraction of nanoparticles, and the maximum enhancement of frictional pressure drop is 20.8% under above conditions. A frictional pressure drop correlation for refrigerant-based nanofluid is proposed, and the predictions agree with 92% of the experimental data within the deviation of ±15%.  相似文献   

14.
Evaporation heat transfer experiments for two refrigerants, R-407C and R-22, mixed with polyol ester and mineral oils were performed in straight and U-bend sections of a microfin tube. Experimental parameters include an oil concentration varied from 0 to 5%, an inlet quality varied from 0.1 to 0.5, two mass fluxes of 219 and 400 kg m−2s−1 and two heat fluxes of 10 and 20 kW m−2. Pressure drop in the test section increased by approximately 20% as the oil concentration increased from 0 to 5%. Enhancement factors decreased as oil concentration increased under inlet quality of 0.5, mass flux of 219 kg m−2 s−1, and heat flux of 10 kW m−2, whereas they increased under inlet quality of 0.1, mass flux of 400 kg m−2 s−1, and heat flux of 20 kW m−2. The local heat transfer coefficient at the outside curvature of an U-bend was larger than that at the inside curvature of a U-bend, and the maximum value occurred at the 90° position of the U-bend. The heat transfer coefficient was larger in a region of 30 tube diameter length at the second straight section than that at the first straight section.  相似文献   

15.
Convective boiling heat transfer experiments were performed in horizontal minichannels with binary mixture refrigerant, R-410A. The test section is made of stainless steel tubes with inner diameters of 1.5 mm and 3.0 mm and with lengths of 1500 mm and 3000 mm, respectively, and is uniformly heated by applying electric current directly to the tubes. Local heat transfer coefficients were obtained for a heat flux range of 10–30 kW m−2, a mass flux range of 300–600 kg m−2 s−1, and quality ranges of up to 1.0. The experimental results were mapped on Wang et al.'s (C.C. Wang, C.S. Chiang, D.C. Lu, Visual observation of two-phase flow pattern of R-22, R-134a, and R-407C in a 6.5-mm smooth tube, Experimental, Thermal and Fluid Science 15 (1997) 395–405) and Wojtan et al.'s (L. Wojtan, T. Ursenbacher, J.R. Thome, Investigation of flow boiling in horizontal tubes: part I – a new diabatic two-phase flow pattern map, International Journal of Heat and Mass Transfer 48 (2005) 2955–2969) flow pattern maps to observe the flow regimes. Laminar flow appears in flow with minichannels. A new boiling heat transfer coefficient correlation based on the superposition model for R-410A was developed with 11.20% mean deviation; it showed a good agreement between the measured data and the calculated heat transfer coefficients.  相似文献   

16.
This study examined the two-phase flow boiling pressure drop and heat transfer for propane, as a long term alternative refrigerant, in horizontal minichannels. The pressure drop and local heat transfer coefficients were obtained for heat fluxes ranging from 5–20 kW m?2, mass fluxes ranging from 50–400 kg m?2 s?1, saturation temperatures of 10, 5 and 0 °C, and quality up to 1.0. The test section was made of stainless steel tubes with inner diameters of 1.5 mm and 3.0 mm, and lengths of 1000 mm and 2000 mm, respectively. The present study showed the effect of mass flux, heat flux, inner tube diameter and saturation temperature on pressure drop and heat transfer coefficient. The experimental results were compared against several existing pressure drop and heat transfer coefficient prediction methods. Because the study on evaporation with propane in minichannels was limited, new correlations of pressure drop and boiling heat transfer coefficient were developed in this present study.  相似文献   

17.
An experimental and theoretical study of the diabatic flow of carbon dioxide through lateral capillary tube suction line heat exchangers is outlined. The influence of both operating conditions (capillary tube inlet and outlet pressures, capillary tube inlet temperature and suction line inlet temperature) and tube geometry (heat exchanger length and position, suction line diameter and capillary tube length) on the heat and mass flow rates was experimentally evaluated using a purpose-built testing facility. In total, 75 tests were carried out with heat fluxes spanning from 1 to 11 kW m−2 and refrigerant mass flow rates ranging from 12 to 26 kg h−1. In addition, the mathematical model of Hermes et al. (2008) was adapted to run with carbon dioxide as working fluid. The model was validated against experimental data, and a good agreement between the experimental and calculated mass flow rates was achieved with 85% and 98% of the data points being within ±5% and ±10% error bounds, respectively.  相似文献   

18.
The present experimental investigation has been carried out to investigate the effects of various geometric parameters on the mass flow rate of R-134a through diabatic spiral capillary tube. In diabatic flow, the capillary tube is bonded with the compressor suction-line to form a counter-flow exchanger. The lateral type of diabatic capillary tube has been investigated in the present experimental study. The major geometric parameters investigated are capillary tube diameter, capillary tube length and coil pitch. In addition, effect of inlet subcooling on the mass flow rate through diabatic spiral capillary tube is also done. A comparison of the performance of diabatic spiral capillary tube has been made with adiabatic spiral capillary tube. Generalized empirical correlation for diabatic spiral capillary tube has also been proposed. It has been found that the predictions of the proposed correlation lie in the error band of ±7%.  相似文献   

19.
This article presents detailed two-phase diabatic pressure drop data for refrigerant R134a at a saturation pressure of 5.5 bar corresponding to the saturation temperature of 19.4 °C. Study cases have been set for a mass flux varying from 100 to 500 kg m−2 s−1.The obtained data are used as a validation of the void fraction literature models, a set of graphs shows comparisons, for a representative set of experimental conditions, of the two-phase frictional pressure gradients for the adiabatic and diabatic flow.Verification of the acceleration pressure drop predictions for two-phase adiabatic flow showed that all correlations predict that over 60% of experimental data fit in the range of ±30%. The model proposed in this article predicts 63% of presented data within 10% error, and 96% of the data are predicted within 30% error.  相似文献   

20.
Development of correlations predicting critical mass flow rate and critical pressure distribution through capillary tubes is presented. In order to accomplish such a work, the critical mass flow rate and pressure distribution for nearly 500 operational conditions for R-12, R-22, and R-134a are evaluated. Operational conditions include inlet pressure varying from 800 to 1500 kPa, inlet subcold temperature between 0 and 10 °C, length varying from 1 to 2 m, and inner diameter between 0.5 and 1.5 mm. By performing non-dimensional analysis on numerical data, general correlations are presented to predict the critical mass flow rate through capillary tubes. In addition, by utilizing numerical data for down-stream pressure, non-dimensional analysis is performed to present correlations to predict critical down-stream pressure and pressure distribution through capillary tubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号