首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The low-voltage electromechanical actuation of polypyrrole (PPy) doped with di-(2-ethylhexyl)sulfosuccinate (DEHS) has been investigated. The PPy-DEHS has been prepared both chemically (cast as films from solution) and by more conventional electrochemical polymerization. Very large strains of ∼30% were obtained during slow-scan redox cycling of the electrochemically prepared PPy-DEHS films. In constrast, PPy-DEHS films cast from solutions of the chemically polymerized polymer gave actuation strains of ∼2.5%. The polymerization method was also found to have a significant effect on the structure, conductivity and mechanical properties of the PPy-DEHS materials. The conductivity of the electrochemically polymerized PPy-DEHS was 75 S cm−1, considerably higher than that found for the chemically derived polymer (7 S cm−1). The structure of the PPy-DEHS was further elucidated from UV-vis, Raman and FT-IR spectral studies which indicated that the conjugation length of the PPy could be increased significantly by varying the polymerization method. Films obtained by casting chemically prepared PPy-DEHS showed higher modulus (2.3 GPa) than electropolymerized PPy-DEHS (0.6 GPa), but were more brittle. Both materials were electroactive in acetonitrile/water electrolyte. The higher actuation strain observed in the electrochemically prepared films was attributed to a more open molecular structure (as indicated by the lower modulus) allowing for easier ion diffusion and a higher conductivity allowing easier charge transfer.  相似文献   

2.
We report that a solution‐processed vanadium pentoxide (V2O5) layer can be utilized as an effective and stable hole injection layer in organic light‐emitting diodes and polymer light‐emitting diodes instead of polyethylene dioxythiophene : polystyrenesulfonate (PEDOT : PSS). The organic light‐emitting diode and polymer light‐emitting diode with the V2O5 layer have driving voltages that are 2.2 and 0.3 V lower for 1000 cd/m2, respectively, than the devices with PEDOT : PSS. In addition, the devices with the V2O5 layer show improved operational stability compared with the devices with PEDOT : PSS. Therefore, a solution‐processed V2O5 layer can be utilized as an effective and stable hole injection layer instead of PEDOT : PSS.  相似文献   

3.
PEDOT:PSS is a conductive polymer that is used as electrodes in organic electronic devices, but also in neuronal probes and implantable devices. This material can also be used for building deformable electrodes in soft substrates for several sensing applications. However, this material being sensitive to several chemicals and moisture it is difficult to pattern microstructures using standard lithography techniques. This paper will review and show some techniques developed for patterning PEDOT:PSS thin films using both soft lithography, such as microcontact printing and shadow masking, and conventional lithography techniques. In addition of this review we present a new lithography technique using silicon nitride protection layer and an analysis and comparison of ICP RIE dry plasma etch rates of PEDOT:PSS with different gases.  相似文献   

4.
Oriented organic layers have great potential for organic electronics devices because of the unique modification of material properties without extensive chemical synthesis. Such layers can be prepared by wet coating of anisotropic organic molecules on top of specific surface of alignment layer. One of the most important parameter that indicates alignment properties of the surface is the anchoring energy. In this paper, we investigate azimuthal anchoring energy of pure and glycerol‐doped PEDOT : PSS layers and study the influence of the alignment layer preparation on the order parameter of the top wet‐coated oriented organic emitter. We confirm that the azimuthal anchoring energy increase leads to improvement of both dichroic ratio and contrast ratio of polarized emitter layer rod‐coated on top of the PEDOT : PSS. Suggested mechanism of anisotropic emitter formation at wet deposition grounds possibility of linear deposition rate of 2 m/s on top of PEDOT : PSS layer with obtained azimuthal anchoring above >10?4 J/m2.  相似文献   

5.
We have investigated the photo-response characteristics of organic photosensors (OPS) integrated with pentacene based thin film transistors (TFTs). The fabricated device configuration is PEN/ITO/PEDOT:PSS/(poly(3-hexylethiophene)/phenyl-C61-butryic acid methyl ester) (P3HT/PCBM)/Al and PDMS/Au/(poly-4-vinyphenol) (PVP)/pentacene/Au. In order to study the effect of the applied voltage to the pentacene-TFT on the OPS, each device is connected in series. The response current is tuned dependant on the gate-source voltage and the anode-source voltage. The change of the photo induced ON current in the integrated device is measured under light illuminations ranging from 50 mW/cm2 to 500 mW/cm2; the corresponding photo-response (ΔI/I0) of the devices varied from 0.16 to 1.9. We found that the photo-response characteristic is high at the low anode-source voltage and high gate-source voltage.  相似文献   

6.
Abstract— We have developed a process that enables one to conform polymer‐dispersed liquid‐crystal (PDLC) displays into a particular shape indefinitely. Planar PDLC displays are first fabricated between indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates. This fully functional display can then be conformed to a particular shape by heating above the glass‐transition temperature of PET and then allowing it to cool down to room temperature. The display retains its shape and is fully functional after processing. We have created spiral‐and wave‐like samples and have demonstrated their operation after the conformal process. The stress is relieved in the substrate by conforming. Temperature effects on polymer substrates were investigated for two types of polymer films (PET/ITO substrates and a conducting polymer PEDOT:PSS/PET substrate) to analyze the effects of temperature on the resistance and mechanics of the films under an applied uniaxial strain. We have found a decrease in contrast of the PDLC after conforming, but surprisingly, a reduced threshold voltage and reduced hysterisis occurs.  相似文献   

7.
A polymer-based pH electrode has been successfully fabricated via a simple electropolymerization of bisphenol A (BPA) on an indium tin oxide (ITO) electrode using repetitive voltammetric sweeping. A combination of voltammetry, electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy revealed that polybisphenol A (PBPA) films with benzoquinonyl and hydroquinonyl groups not only showed basically reversible redox activities, but also exhibited the mixed ionic-electronic conductivity. The redox peak potential and open circuit potential using the PBPA/ITO electrode as a pH sensor presented response slopes of −58.6 ± 1.4 mV/pH and −56.7 ± 1.6 mV/pH, respectively. The potentiometric signals were stable in electrolyte solutions and displayed a wide response range for the detection of pH. Compared with the commercial glass pH electrode, the PBPA-based electrode showed several advantages including easy fabrication, low cost, high stability and selectivity.  相似文献   

8.
Abstract— Transparent and electrically conductive coatings and films have a variety of fast‐growing applications ranging from window glass to flat‐panel displays. These mainly include semiconductive metal oxides such as indium tin oxide (ITO) and polymers such as poly(3,4‐ethylenedioxythiophene) doped and stabilized with poly(styrenesulfonate) (PEDOT/PSS). In this paper, we show alternatives to ITO and conducting polymers, using single‐wall carbon nanotubes (SWNT). These CNT‐based technologies offer conducting substrates having a broad range of conductivity, excellent transparency, neutral color tone, good adhesion, abrasion resistance, and flexibility. Additional benefits include ease of both processing and patterning. This paper reports on optoelectronic properties and structure characterization of these materials.  相似文献   

9.
In this paper, a stable sandwich-type amperometric biosensor based on poly(3,4-ethylenedioxythiophene) (PEDOT)-single walled carbon nanotubes (SWCNT)/ascorbate oxidase (AO)/Nafion films for detection of l-ascorbic acid (AA) was successfully developed. PEDOT-SWCNT nanocomposite and Nafion films were used as inner and outer films, respectively. AO was immobilized between these two films. The PEDOT-SWCNT nanocomposite films were characterized by electrochemical impedance spectroscopy and scanning electron microscopy. The influence of detection potential and temperature on the biosensor performance was examined in detail. Despite the multilayer configuration, the biosensor exhibited a relatively fast response (less than 10 s) and a linear range from 1 μM to 18 mM (a correlation coefficient of 0.9974). The sensitivity of the biosensor was found to be 28.5 mA M−1 cm−2. Its experimental detection limit was 0.7 μM (S/N = 3) and the apparent Michaelis-Menten constant (Km) was calculated to be 18.35 mM. Moreover, the biosensor exhibited good anti-interferent ability and excellent long-term stability. All the results showed that such sandwich-type PEDOT-SWCNT/AO/Nafion films could provide a promising platform for the biosensor designs for AA detection.  相似文献   

10.
Organic thin film transistor (OTFT) chemical sensors rely on the specific electronic structure of the organic semiconductor (OSC) film for determining sensor stability and response to analytes. The delocalized electronic structure is influenced not only by the OSC molecular structure, but also the solid state packing and film morphology. Phthalocyanine (H2Pc) and tetrabenzoporphyrin (H2TBP) have similar molecular structures but different film microstructures when H2Pc is vacuum deposited and H2TBP is solution deposited. The difference in electronic structures is evidenced by the different mobilities of H2TBP and H2Pc OTFTs. H2Pc has a maximum mobility of 8.6 × 10−4 cm2 V−1 s−1 when the substrate is held at 250 °C during deposition and a mobility of 4.8 × 10−5 cm2 V−1 s−1 when the substrate is held at 25 °C during deposition. Solution deposited H2TBP films have a mobility of 5.3 × 10−3 cm2 V−1 s−1, which is consistent with better long-range order and intermolecular coupling within the H2TBP films compared to the H2Pc films. Solution deposited H2TBP also exhibits a textured film morphology with large grains and an RMS roughness 3-5 times larger than H2Pc films with similar thicknesses. Despite these differences, OTFT sensors fabricated from H2TBP and H2Pc exhibit nearly identical analyte sensitivity and analyte response kinetics. The results suggest that while the interactions between molecules in the solid state determine conductivity, localized interactions between the analyte and the molecular binding site dominate analyte binding and determine sensor response.  相似文献   

11.
A simple and inexpensive glucose sensor with micromolar sensitivity is demonstrated. The sensor utilizes a poly(3,4-ethyelenedioxythiphene) poly(styrene sulfonate) (PEDOT:PSS) based electrochemical transistor in which all the electrodes and the channel were made with the same polymer. The sensor was fabricated in a one step fabrication process using inexpensive and rapid xurography technique and is able to detect glucose concentrations from approximately 1 μM to 10 mM and showed adequate change for glucose levels in the range of human saliva (8-210 μM) without utilizing any external electron mediators.  相似文献   

12.

For flexible electronic devices, the transparent conductive electrode (TCE) is the most important material for determining the flexibility of devices. Due to the brittleness of the indium tin oxide (ITO) electrode, several alternative TCEs have been developed. However, it is still difficult to successfully achieve quality as good as ITO. In this study, the flexibility of the ITO electrode was investigated with strain and fracture analysis. Effects of thickness of the ITO and the substrate on the flexibility of ITO were investigated by bending tests, numerical simulation and theoretical analysis. Flexibility of ITO electrode can be increased by reducing the thickness of ITO and substrate material. An ITO electrode with a substrate less than 50 μm could be bent to less than 4 mm without failure, and used in flexible electronics. Effects of different substrate materials on the flexibility of ITO were also investigated based on fracture analysis. We investigated the effects of PEDOT [poly(3,4-ethylenedioxythiophene)] as a buffer layer to improve flexibility. Higher flexibility of the ITO/PEDOT hybrid electrode compared to ITO was attributed to the PEDOT layer, which smoothened ITO surface and decreased the density of pinholes or voids of ITO, resulting in higher crack resistance.

  相似文献   

13.
In this work we used the sol-gel technique to develop luminescent Eu(III) transparent films deposited on glass slides to build for sensor devices capable of monitoring transition metal ions in aqueous solutions. The films were obtained from a bis(trialkoxysilyl) organic precursor synthesized from the amide of the 2,6-pyridinedicarboxylic acid (DPA) with aminopropyltriethoxysilane (APTES) in the presence or absence of cetyl trimethyl ammonium bromide (CTAB) surfactant as templating agent and triethylethoxysilane (TEOS) as crosslinker. These sensor devices were used to perform in situ quenching experiments by Cu(II), Fe(III), Co(II) and Ni(II) ions. The results indicate that the templated films allow the detection and quantification of these metals down to ppb levels by means of the values of the Stern-Volmer constants. In particular, it was shown that Cu(II) acts as an extremely efficient quencher (KSV = 3.5 × 105 M−1) when compared with the results obtained for the other metals, opening the possibility to use these devices as potential Cu(II) sensors for actual applications in aqueous media.  相似文献   

14.
This work reports on the Cu2+ chemosensing behaviour of self-organized micro-array structures of a novel donor-acceptor bichromophoric compound anchored onto Ag nanoisland films. The system exhibits quenching of the fluorescence in the presence of Cu2+ ions, with detection range extending from 2 × 10−8 M up to 3 × 10−6 M and limit of detection (LOD) of 8 × 10−9 M. The quenching of fluorescence is accompanied by a quenching of SERS signal from the metal-organic structure, which is consistent with an electron transfer between the copper cation and the organic moiety. The self-organization property of the sensing complexes into micrometric arrays offers great potential for miniaturization and future development of Cu2+ detection systems based on real-time observation of fluorescence or SERS quenching by fluorescence microscopy or microRaman spectroscopy.  相似文献   

15.
A novel label-free electrochemical immunosensor for sensitive detection of kanamycin based on water-soluble graphene sheet (WGS)/prussian blue-chitosan (PB-CTS)/nanoporous gold (NPG) composited film has been reported. PB was selected as an electron transfer mediator, and was modified onto the electrode together with WGS through electrostatic adsorption. Then NPG was immobilized onto the as-prepared film for biomolecules anchoring. The electroactivity of PB was greatly enhanced in the presence of WGS and NPG. It could mainly be ascribed to the fact that the good conductivity of WGS and NPG promoted electron transfer and enhanced the sensitivity. kanamycin antibody, as a model, was immobilized onto the composite film for the detection of kanamycin. Under optimum conditions, the amperometric signal of PB decreased linearly with kanamycin concentration (0.02-14 ng mL−1), a linear calibration plot (y = 1.3817 + 4.7544x, r = 0.9993), resulting in a low limit of detection (6.31 pg mL−1). The novel immunosensor for the detection of kanamycin in real sample with satisfactory results has been proved. In addition, this method would be easily adapted for the detection of other residual antibiotics in animal derived foods.  相似文献   

16.
A novel toxicity detection methodology based on sulfur-oxidizing bacteria (SOB) has been developed for the rapid and reliable detection of toxic chemicals in water. The methodology exploits the ability of SOB to oxidize sulfur particles in the presence of oxygen to produce sulfuric acid according to the following equation: S + H2O + 1.5O2 → SO42− + 2H+, ΔG°′ = −587.1 kJ/reaction. The reaction results in an increase in electrical conductivity (EC) and a decrease in pH as SOB convert insoluble sulfur particles to sulfate and protons. The proposed technique is validated using EC and pH data. Using a synthetic stream water (EC = 0.12 mS/cm and pH 7.2), the baseline steady-state EC and pH values were ∼1.0 mS/cm and ∼2.5 over 30 days of testing when hexavalent chromium (Cr6+) was not added to the system. When Cr6+ was added to the system, the effluent EC decreased and the pH increased due to inhibition of SOB. We found that the system can detect Cr6+ at a concentration of 5 ppb which is lower than any method to date.  相似文献   

17.
18.
In present paper, the graphene doped carbon paste electrode (CPE) was firstly prepared with the addition of graphene into the carbon paste mixture. Compared with conventional CPE, an improved electrochemical response of graphene doped CPE toward the redox couple of Fe(CN)63−/4− was demonstrated owing to the excellent electrical conductivity of graphene. The graphene doped CPE was further used for the successful determination of ascorbic acid (AA), and it showed an excellent electrocatalytic oxidation activity toward AA with a lower overvoltage, pronounced current response, and good sensitivity. Under the optimized experimental conditions, the proposed electrochemical AA sensor exhibited a rapid response to AA within 5 s and a linear calibration plot ranged from 1.0 × 10−7 to 1.06 × 10−4 M was obtained with a detection limit of 7.0 × 10−8 M.  相似文献   

19.
Two novel carbazole/anthracene hybrided molecules, namely 2-(anthracen-9-yl)-9-ethyl-9H-carbazole (AnCz) and 2,7-di(anthracen-9-yl)-9-ethyl-9H-carbazole (2AnCz), were designed and synthesized via palladium catalyzed coupling reaction. The anthracene was attached either at the 2-site (AnCz) or at both 2,7-sites (2AnCz) of the central carbazole core to tune the conjugation state and the optoelectronic properties of the resultant molecules. Both of them show good solubility in common organic solvents. They also possess relatively high HOMO levels (−5.39 eV, −5.40 eV) that would facilitate efficient hole injection and be favorable for high power efficiencies when used in organic light-emitting devices (OLEDs). AnCz and 2AnCz were used as non-doped emitter to fabricate OLEDs by vacuum evaporation. Good performance was achieved with maximum luminance efficiency of 2.61 cd A−1 and CIE coordinates of (0.15, 0.12) for AnCz, and 9.52 cd A−1 and (0.22, 0.37) for 2AnCz.  相似文献   

20.
Abstract— Failure mechanisms for flexible conducting substrates are investigated herein in the context of rollable/flexible display applications. Cyclic loading experiments (substrates subjected to multiple cycles of tensile strain) were carried out on both ITO‐coated PET and PEDOT:PSS‐coated PET substrates. The resistance was measured after each bending cycle. The resistance increased with the number of cycles and was not reversible. Even when the tensile strain on the ITO/PET was below the virgin cracking threshold (~2%) previously reported [Appl Phys Lett 76, 1425 (2000)], slight increases in resistance were measurable after just a few cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号