共查询到20条相似文献,搜索用时 15 毫秒
1.
低光照图像增强旨在提高光照不足场景下捕获数据的视觉感知质量以获取更多信息,逐渐成为图像处理领域中的研究热点,在自动驾驶、安防等人工智能相关行业中具有十分广阔的应用前景。传统的低光照图像增强技术往往需要高深的数学技巧以及严格的数学推导,且导出的迭代过程普遍流程复杂,不利于实际应用。随着大规模数据集的相继诞生,基于深度学习的低光照图像增强已经成为当前的主流技术,然而此类技术受限于数据分布,存在性能不稳定、应用场景单一等问题。此外,在低光照环境下的高层视觉任务(如目标检测)对于低光照图像增强技术的发展带来了新的机遇与挑战。本文从3个方面系统地综述了低光照图像增强技术的研究现状。介绍了现有低光照图像数据集,详述了低光照图像增强技术的发展脉络,通过对比低光照图像增强质量与夜间人脸检测精度,进一步对现有低光照增强技术进行了全面评估与分析。基于对上述现状的探讨,结合实际应用,本文指出当前技术的局限性,并对其发展趋势进行预测。 相似文献
2.
目的 低光照图像增强是图像处理中的基本任务之一。虽然已经提出了各种方法,但它们往往无法在视觉上产生吸引人的结果,这些图像存在细节不清晰、对比度不高和色彩失真等问题,同时也对后续目标检测、语义分割等任务有不利影响。针对上述问题,提出一种语义分割和HSV(hue,saturation and value)色彩空间引导的低光照图像增强方法。方法 首先提出一个迭代图像增强网络,逐步学习低光照图像与增强图像之间像素级的最佳映射,同时为了在增强过程中保留语义信息,引入一个无监督的语义分割网络并计算语义损失,该网络不需要昂贵的分割注释。为了进一步解决色彩失真问题,在训练时利用HSV色彩空间设计HSV损失;为了解决低光照图像增强中出现细节不清晰的问题,设计了空间一致性损失,使增强图像与对应的低光照图像尽可能细节一致。最终,本文的总损失函数由5个损失函数组成。结果 将本文方法与LIME(low-light image enhancement)、RetinexNet(deep retinex decomposition)、EnlightenGAN(deep light enhancement using generative adversarial networks)、Zero-DCE(zero-reference deep curve estimation)和SGZ(semantic-guided zero-shot learning)5种方法进行了比较。在峰值信噪比(peak signal-to noise ratio,PSNR)上,本文方法平均比Zero-DCE(zero-reference deep curve estimation)提高了0.32dB;在自然图像质量评价(natural image quality evaluation,NIQE)方面,本文方法比EnlightenGAN提高了6%。从主观上看,本文方法具有更好的视觉效果。结论 本文所提出的低光照图像增强方法能有效解决细节不清晰、色彩失真等问题,具有一定的应用价值。 相似文献
3.
在低光照环境下获取的图像通常会出现图像亮度低、颜色失真、细节信息丢失以及对比度低等问题。为了满足主观视觉体验的需求,往往会对图像进行增强处理。然而,图像增强对机器视觉应用性能的影响缺乏系统研究。本文以语义分割这一机器视觉应用为例,首先对主流的语义分割方法和低光照图像增强方法进行归纳总结,然后对经图像增强方法处理的低光照图像进行语义分割,从而探究图像增强方法对低光照场景语义分割性能的影响。实验结果表明,增强处理可以改善图像的人眼视觉效果,但是可能会引入噪声等影响,并且图像增强方法和语义分割方法关注的重点和特征不完全一致。图像增强对于低光照场景语义分割性能的促进作用并不明显,甚至会带来负面影响。 相似文献
4.
由于现实环境中明暗光照的剧烈变化,现有的低光照图像增强方法往往会导致增强后的图像亮度和对比度不足,出现伪影和模糊等情况。此外,当前的低光照图像增强工作仅针对于图像亮度的提升,而对于噪声影响的处理较少,这些都不利于低光图像的增强。为了解决上述问题,论文提出了一种基于上下文Transformer的低光照图像增强算法。具体地,论文首先利用动态卷积网络对低光照图像进行特征提取;接着,设计了上下文Transformer对得到的特征图进行全局关联的深层特征提取,并使用金字塔池化模块进行去噪处理;最后,通过瓶颈结构的卷积网络输出得到增强后的图像。在多个主流数据集(LOL,LIME,DICM等)上的对比实验结果表明,与目前已有的主流工作相比,论文所提方法的结果不仅在主观视觉上有更好的视觉效果,更加符合人眼的视觉特点;而且在各种定量客观评价指标上也有良好的表现,尤其在PSNR和SSIM两个指标上有明显的提升。 相似文献
5.
夜间、低光照等条件下的产生的图像数据,存在画面过暗、细节丢失的问题,对理解图像内容、提取图像特征造成阻碍.研究针对此类图像的增强方法,恢复图像的亮度、对比度和细节,在数字摄影、上游计算机视觉任务中有着重要的应用价值.本文提出一种基于U-Net的生成对抗网络,生成器采用带有混合注意力机制的U-Net模型,其中混合注意力模... 相似文献
6.
为了提高可变光照条件下的人脸图像整体效果,提出一种基于改进单尺度Retinex的光照变化人脸增强算法。首先对人脸图像进行对数变换,经过曲波变换得到高频和低频两部分;然后采用双边滤波对高频进行去噪处理,同时采用Kimmel变分模型对低频部分进行光滑滤波;最后对人脸图像进行重构,并对图像进行伽马校正处理。在Yale B光照人脸库上的实验结果表明,该算法能较好地防止“光晕”现象出现,可以还原出人脸图像的本来面貌,使人脸图像更加适合人眼观察。 相似文献
7.
针对Retinex-Net存在噪声较大、颜色失真的问题,基于Retinex-Net的分解-增强架构,文中提出改进Ret-inex-Net的低光照图像增强算法.首先,设计由浅层上下采样结构组成的分解网络,将输入图像分解为反射分量与光照分量,在此过程加入去噪损失,抑制分解过程产生的噪声.然后,在增强网络中引入注意力机制模块... 相似文献
8.
在光照条件不充足的情况下,拍摄的图像质量较差.对于低光照图像增强,基于Retinex的方法大多忽略了降噪.本文结合Retinex和卷积神经网络构建了一个有效的模型,包括3个子模块,分解模块、注意力降噪模块和亮度调整模块.分解模块用残差连接方式和空洞卷积来构建,以减少在分解过程中细节信息的丢失,得到更准确的反射图和亮度图... 相似文献
9.
光照变化是影响人脸识别的重要因素。光照梯度补偿是解决这一问题的方法之一。该方法通过最小二乘法计算出一个光照平面,然后将原图像减去光照平面,用所得的差图像来识别人脸。由于人脸的两半并非共面,它们与入射光线形成的角度是不同的,因此光照平面应该是不同的。如果分别计算两个光照平面又将导致差图像不连续。本文提出了一种算法,将两个半脸的光照平面系数合成一个系数向量,一同求解这些系数,然后调整其中的常系数项,使两边连续。从而实现,两边的光照平面不同,又保持了连续性。实验结果表明效果良好。 相似文献
10.
低光照图像增强是解决低光照环境下各种视觉分析任务的基础和核心步骤,但现有主流方法由于普遍未能对结构信息进行有效刻画,往往存在曝光不均衡、颜色失真等问题.针对上述问题,文中提出结合视觉显著性与注意力机制的低光照图像增强方法.首先,构建基于注意力机制的低光照图像增强网络,在引入注意力机制的同时考虑局部细节和全局信息,正确刻画增强结果中的颜色信息.再遵循由粗到细的逐步优化理念,设计渐进式注意力机制,将增强过程分阶段细化,实现精细化建设.然后,引入显著性引导的特征融合,增强网络对图像中显著性目标的感知能力,从更符合视觉认知需求的角度提升对于结构信息的表达,有效避免产生噪声/伪影等问题.实验表明,文中方法有效解决现有工作存在的曝光不足与颜色失真等问题,性能较优. 相似文献
11.
在低光条件下拍摄的照片会因曝光不足而产生一系列的视觉问题,如亮度低、信息丢失、噪声和颜色失真等。为了解决上述问题,提出一个结合注意力的双分支残差低光照图像增强网络。首先,采用改进InceptionV2提取浅层特征;其次,使用残差特征提取块(RFB)和稠密残差特征提取块(DRFB)提取深层特征;然后,融合浅层和深层特征,并将融合结果输入亮度调整块(BAM)调整亮度,最终得到增强图像。同时,结合注意力机制设计特征融合块(FFM)捕获重要的特征信息,以帮助恢复低光照图像的暗部区域。此外,引入一个联合损失函数从多方面衡量网络训练损失。实验结果表明,相较于鲁棒的视网膜大脑皮层模型(RRM)、Zero-DCE(Zero-Reference Deep Curve Estimation)和EnlightenGAN(Enlighten Generative Adversarial Network),在LOL(LOw-Light)数据集上,所提网络的峰值信噪比(PSNR)指标分别提高了49.9%、40.0%和18.5%;在LOL-V2数据集上,结构相似性(SSIM)指标分别提高了20.3%、50.0%和3... 相似文献
12.
提出了一种新的光照不变人脸识别的图像预处理算法称为分段局部归一化方法(SLN)。其思想是对图像像素分段,使得每段中各像素对应的物体表面点具有相近的表面法向量分布,因而对光源具有相似的灰度响应,然后局部归一化在各段中进行以削弱光照影响。该算法首先建立物体的朗伯(Lambert)表面反射模型,用奇异值分解方法估计出人脸形状的平均表面法向量分布矩阵,根据法向量方向利用聚类算法对像素进行分段,然后在各段中进行局部的像素归一化处理,最后传统的人脸识别算法如PCA在归一化后的图像中进行。在Harvard和YaleB人脸图像库中的识别试验表明,该算法能有效地提高在非均匀光照条件下的人脸识别率。 相似文献
13.
低光照图像分割一直是图像分割的难点,低光照引起的低对比度和高模糊性使得这类图像分割比一般图像分割困难很多。为了提高低光照环境下语义分割的准确度,根据低光照图像自身特征,提出一种噪声指导下过滤光照风格的低光照场景语义分割模型(SFIS)。该模型综合利用信噪比作为先验知识,通过指导长距离分支中的自注意力操作、长/短距离分支的特征融合,对图像中不同噪声的区域采用不同距离的交互。还进一步设计了一个光照过滤器,该模块从图像的整体风格中进一步提取光照风格信息。通过交替训练光照过滤器与语义分割模型,逐步减小不同光照条件之间的光照风格差距,从而使分割网络学习到光照不变特征。提出的模型在数据集LLRGBD上优于之前的工作,取得了较好的结果。在真实数据集LLRGBD-real上的mIoU达到66.8%,说明所提出的长短距离分支模块和光照过滤器模块能够有效提升模型在低光照环境下的语义分割能力。 相似文献
14.
15.
任意光照下人脸图像的低维光照空间表示 总被引:3,自引:0,他引:3
本文提出一种不同光照条件下人脸图像的低维光照空间表示方法.这种低维光照空间表示不仅能够由输入图像估计其光照参数,而且能够由给定的光照条件生成虚拟的人脸图像.利用主成分分析和最近邻聚类方法得到9个基本点光源的位置,这9个基本点光源可以近似人脸识别应用中几乎所有的光照条件.在这9个基本光源照射下的9幅人脸基图像构成了低维人脸光照空间,它可以表示不同光照条件下的人脸图像,结合光照比图像方法,可以生成不同光照下的虚拟人脸图像.本文提出的低维光照空间的最大优点是利用某个人脸的图像建立的光照空间,可以用于不同的人脸.图像重构和不同光照下的人脸识别实验说明了本文算法的有效性. 相似文献
16.
程勇 《计算机工程与应用》2017,53(10):21-26
基于光照估计的光照不变量提取是提高复杂光照人脸识别性能的一种有效方法。以往算法仅考虑光照缓慢变化特性从人脸图像中估计光照,无法获取准确的光照和光照不变量。综合考虑图像的成像原理、光照缓慢变化特性和复杂照明环境,结合图像融合和平滑滤波,提出一种有效的人脸图像光照估计、光照不变量提取方法。所提算法能较好地处理阴影边缘问题,提取含有丰富面部细节特征、更接近于人脸本征的光照不变量。复杂光照Yale B+和CAS-PEAL-R1人脸库上的实验结果表明所提算法具有高效性。 相似文献
17.
在逃犯追缉领域,基于人脸识别的逃犯鉴别技术受到高度重视。但是,各种恶劣的光照条件严重影响了对目标人脸的辨识。因此,如何排除光照干扰成为一个迫切需要解决的问题。本文提出一种新的重光照算法,利用自商图像算法求出人脸纹理特征,再利用辅助光照集合来归一化人脸光照分量,最后合成新的人脸图像用于人脸识别。在AR、CMU_PIE、CSA_Lighting库上进行人脸识别测试,结果表明改进的新算法有效地减轻了光照影响,提高了人脸正确识别率。在实际的追逃图片处理中也明显改善了追逃效率。 相似文献
18.
针对复杂环境下如光照较弱、雾天等条件下拍摄的图像存在对比度不足、整体偏暗等问题,提出一种结合智能风驱动优化的低复杂度的图像增强方法.该方法利用双曲正弦函数、伽马校正函数、Sigmoid函数、对比度拉伸函数对图像进行校正.针对图像增强过程中伽马校正参数与对比度拉伸函数中动态因子的参数选择问题,利用智能风驱动算法,将图像信... 相似文献
19.
《计算机科学与探索》2018,(1):163-170
针对火焰与背景对比度不明显情况下的低对比度火焰目标提取问题,提出了一种Retinex和CV(Chan-Vese)模型相结合的火焰图像增强和分割算法。首先在YCb Cr颜色空间利用Retinex算法构造彩色双边滤波器,根据分量Cr和Cb的关系设计对比度调节函数调节像素点亮度,以凸显原图像中火焰明亮、鲜艳的颜色特征,细节信息也更清晰;再通过帧间差分法和建立的火焰颜色模型获取疑似火焰区域,根据该区域所得中心坐标点设置CV模型的初始轮廓曲线,进一步分割得到火焰目标。仿真实验表明:所提算法不但能够提取出简单和复杂背景环境下低对比度火焰图像,而且目标边缘不规则信息保留完整,误分率比已有算法有明显降低,表明了算法的先进性和有效性。 相似文献
20.
针对低照度环境下采集的图像存在对比度较低、细节丢失、噪声干扰等问题,提出一种基于Retinex的光照图估计改进算法,以实现低照度图像增强.计算R、G、B 3个颜色通道中的最大值,并用L2范数对光照进行近似,运用基于相对总变差形式的改进模型对亮通道进行平滑细化及自适应Gamma校正,并利用Retinex模型进行图像增强.在MATLAB仿真平台上对不同的低照度图像进行增强处理,实验结果表明,与Retinex-Net、SRIE等典型算法相比,该算法能有效提高图像对比度与清晰度,增强图像细节信息,使图像颜色更加鲜艳自然,视觉质量更好. 相似文献