首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: We determined whether inhaled nitric oxide (NO) could improve systemic oxygenation in human neonates with hypoplastic lungs. METHODS: A multicenter nonrandomized investigation was performed to study the efficacy of short-term NO inhalation. Inhaled NO was administered at 80 ppm to nine neonates without evidence of structural cardiac disease by echocardiography. Lung hypoplasia was due to congenital diaphragmatic hernia (CDH) in eight patients and to oligohydramnios in one patient. A total of 15 trials of NO inhalation were performed in these nine patients. Eight trials in seven patients were performed before extracorporeal membrane oxygenation ((ECMO); one patient had two trials) and seven trials were performed in five patients after decannulation from ECMO (two patients had two trials each). RESULTS: NO inhalation before ECMO did not change postductal PaO2 (42 +/- 3 mmHg vs 42 +/- 4 mmHg), oxygen saturation (SpO2; 89% vs 88%) or oxygenation index (31 +/- 4 cm H2O/torr vs 31 +/- 4 cm H2O/torr) for the group. All patients required ECMO support, which lasted from 5 to 17 days (mean 9). After decannulation from ECMO, NO inhalation increased postductal PaO2 from a median of 56 mm Hg (range 41 to 94) to a median of 113 mm Hg (range 77 to 326), P < .05. It decreased the oxygenation index from a median of 23 cm H2O/torr (range 11 to 7) to a median of 11 cm H2O/torr (range 4 to 21), P < .05. It increased SpO2 from 91% to 96% (P < .05) and pH from 7.48 +/- .03 to 7.50 +/- .03. CONCLUSION: In our patients with hypoplastic lungs, inhaled NO was effective only after ECMO. This could be due to maturational changes such as activating the endogenous surfactant system. Inhaled NO may be effective in neonates with hypoplastic lungs who have recurrent episodes of pulmonary hypertension after ECMO, even if they were previously unresponsive.  相似文献   

2.
Partial liquid ventilation using conventional ventilatory schemes improves lung function in animal models of respiratory failure. We examined the feasibility of high-frequency partial liquid ventilation in the preterm lamb with respiratory distress syndrome and evaluated its effect on pulmonary and systemic hemodynamics. Seventeen lambs were studied in three groups: high-frequency gas ventilation (Gas group), high-frequency partial liquid ventilation (Liquid group), and high-frequency partial liquid ventilation with hypoxia-hypercarbia (Liquid-Hypoxia group). High-frequency partial liquid ventilation increased oxygenation compared with high-frequency gas ventilation over 5 h (arterial oxygen tension 253 +/- 21.3 vs. 17 +/- 1.8 Torr; P < 0.001). Pulmonary vascular resistance decreased 78% (P < 0.001), pulmonary blood flow increased fivefold (P < 0.001), and aortic pressure was maintained (P < 0.01) in the Liquid group, in contrast to progressive hypoxemia, hypercarbia, and shock in the Gas group. Central venous pressure did not change. The Liquid-Hypoxia group was similar to the Gas group. We conclude that high-frequency partial liquid ventilation improves gas exchange and stabilizes pulmonary and systemic hemodynamics compared with high-frequency gas ventilation. The stabilization appears to be due in large part to improvement in gas exchange.  相似文献   

3.
Responses to inhaled nitric oxide (iNO) in acute lung injury (ALI), as evidenced by improvements in oxygenation, are variable. We hypothesized that the effect of iNO may be related to the pre-iNO distribution of pulmonary blood flow (PBF). In the present study we evaluated the effect of iNO on PBF in normal healthy dogs and in a canine model of ALI induced by oleic acid (OA). In Group "OA only" (n = 5), ALI was induced by central venous injection of 0.08 ml/kg OA. In Group "E+OA" (n = 5), hypoxic pulmonary vasoconstriction after ALI was blocked with low-dose endotoxin (15 microg/kg of Escherichia coli endotoxin) administered 30 min before giving the same dose of OA. Measurements of regional PBF and lung water concentration (LWC) using positron emission tomography (PET) and H215O were performed before and after OA or placebo, and then again at concentrations of 10, 40, and 0 ppm iNO. One hundred twenty minutes after OA injury, PaO2/FIO2 fell significantly in Group OA only, from 567 +/- 32 to 437 +/- 67 mm Hg. In these animals, PBF redistributed from the dorsal edematous regions of the lungs to the nondependent zones, thus partially preserving normal ventilation/ perfusion relationships. As in the normal animals, in Group OA only, iNO did not significantly change either PBF or oxygenation. In Group E+OA, the administration of low-dose endotoxin eliminated perfusion redistribution from the dorsal edematous lung regions. As a result, PaO2/FIO2 fell from 558 +/- 70 to 119 +/- 53 mm Hg, a decrease that was significantly greater than that in Group OA only. In Group E+OA, administration of iNO restored perfusion redistribution to a similar level as in Group OA only, which was associated with a significant improvement in PaO2/FIO2, from 119 +/- 53 to 251 +/- 159 (10 ppm iNO), and 259 +/- 165 mm Hg (40 ppm iNO). We conclude that the effect of iNO on oxygenation after ALI depends on the pre-iNO perfusion pattern, which may help explain the variable response to iNO often observed in patients with acute respiratory distress syndrome.  相似文献   

4.
It has been shown that pulmonary vasodilation is sustained after discontinuation of inhaled nitric oxide (INO) during moderate hypoxic pulmonary hypertension (HPH) in swine. The present investigations demonstrated how INO dose, hypoxia duration, and endogenous NO production influence this important phenomenon. Fifteen adolescent Yorkshire swine were randomly assigned to three groups (n = 5 each) and underwent the following phasic experimental protocol: (I) Baseline ventilation (FIO2 = .3); (II) Initiating HPH (FIO2 = .16 to .18, PaO2 = 45 to 55 mm Hg); (III) INO at 10 ppm; (IV) Posttreatment observation; (V) INO of 80 ppm; and (VI) Posttreatment observation. Phase II (pretreatment hypoxia) lasted 30 minutes in group A (short hypoxia) and 120 minutes in group B (long hypoxia). N-nitro-L-arginine methyl ester (NAME) was used to inhibit nitric oxide synthase (NOS) throughout the experiment in group C (short hypoxia + NAME). Hemodynamics and blood gases were monitored by systemic and pulmonary artery catheters placed by femoral cutdown. Analysis of variance with post-hoc adjustment was used to compare groups at each phase, and the paired t test was used for comparisons within a group. With respect to baseline mean pulmonary artery pressure (MPAP) and pulmonary vascular resistance (PVR), there were no significant differences among the three groups. MPAP and PVR were significantly higher in group C than in group A during phase II, (MPAP, 76% +/- 8% v 33% +/- 2%; PVR, 197% +/- 19% v 78% +/- 10%; P < .05). There were no significant differences in MPAP or PVR during phases III through VI. When MPAP was expressed as percent dilation, 80 ppm caused significantly more dilation than did 10 ppm in all three groups. Groups A and C had significantly higher sustained pulmonary artery dilation after 80 ppm than after 10 ppm (A, 82% +/- 31% v 17% +/- 11%; C, 68% +/- 10% v 42% +/- 12%; both P < .05), but group B did not (43% +/- 15% v 30% +/- 9%; P = .25). High dose results in stronger vasodilation than low dose during and after INO for moderate HPH of short duration. Long hypoxia blunts this high-dose advantage. Endogenous NO inhibition augments HPH but does not decrease pulmonary vasodilation during or after INO.  相似文献   

5.
OBJECTIVE: We investigated whether a treatment according to a clinical algorithm could improve the low survival rates in acute respiratory distress syndrome (ARDS). DESIGN: Uncontrolled prospective trial. SETTING: One university hospital intensive care department. PATIENTS AND PARTICIPANTS: 122 patients with ARDS, consecutively admitted to the ICU. INTERVENTIONS: ARDS was treated according to a criteria-defined clinical algorithm. The algorithm distinguished two main treatment groups: The AT-sine-ECMO (advanced treatment without extracorporeal membrane oxygenation) groups (n = 73) received a treatment consisting of a set of advanced non-invasive treatment options, the ECMO treatment group (n = 49) received additional extracorporeal membrane oxygenation (ECMO) using heparin-coated systems. MEASUREMENTS AND RESULTS: The groups differed in both APACHE II (16 +/- 5 vs 18 +/- 5 points, p = 0.01) and Murray scores (3.2 +/- 0.3 vs 3.4 +/- 0.3 points, p = 0.0001), the duration of mechanical ventilation prior to admission (10 +/- 9 vs 13 +/- 9 days, p = 0.0151), and length of ICU stay in Berlin (31 +/- 17 vs 50 +/- 36 days, p = 0.0016). Initial PaO2/FIO2 was 86 +/- 27 mm Hg in AT-sine-ECMO patients that improved to 165 +/- 107 mm Hg on ICU day 1, while ECMO patients showed an initial PaO2/FIO2 of 67 +/- 28 mm Hg and improvement to 160 +/- 102 mm Hg was not reached until ICU day 13. QS/QT was significantly higher in the ECMO-treated group and exceeded 50% during the first 14 ICU days. The overall survival rate in our 122 ARDS patients was 75%. Survival rates were 89% in the AT-sine ECMO group and 55% in the ECMO treatment group (p = 0.0000). CONCLUSIONS: We conclude that patients with ARDS can be successfully treated with the clinical algorithm and high survival rates can be achieved.  相似文献   

6.
BACKGROUND: During airway pressure release ventilation (APRV), tidal ventilation occurs between the increased lung volume established by the application of continuous positive airway pressure (CPAP) and the relaxation volume of the respiratory system. Concern has been expressed that release of CPAP may cause unstable alveoli to collapse and not reinflate when airway pressure is restored. OBJECTIVE: To compare pulmonary mechanics and oxygenation in animals with acute lung injury during CPAP with and without APRV. DESIGN: Experimental, subject-controlled, randomized crossover investigation. SETTING: Anesthesiology research laboratory, University of South Florida College of Medicine Health Sciences Center. SUBJECTS: Ten pigs of either sex. INTERVENTIONS: Acute lung injury was induced with an intravenous infusion of oleic acid (72 micrograms/kg) followed by randomly alternated 60-min trials of CPAP with and without APRV. Continuous positive airway pressure was titrated to produce an arterial oxyhemoglobin saturation of at least 95% (FIO2 = 0.21). Airway pressure release ventilation was arbitrarily cycled to atmospheric pressure 10 times per minute with a release time titrated to coincide with attainment of respiratory system relaxation volume. MEASUREMENTS: Cardiac output, arterial and mixed venous pH, blood gas tensions, hemoglobin concentration and oxyhemoglobin saturation, central venous pressure, pulmonary and systemic artery pressures, pulmonary artery occlusion pressure, airway gas flow, airway pressure, and pleural pressure were measured. Tidal volume (VT), dynamic lung compliance, intrapulmonary venous admixture, pulmonary vascular resistance, systemic vascular resistance, oxygen delivery, oxygen consumption, and oxygen extraction ratio were calculated. MAIN RESULTS: Central venous infusion of oleic acid reduced PaO2 from 94 +/- 4 mm Hg to 52 +/- 9 mm Hg (mean +/- 1 SD) (p < 0.001) and dynamic lung compliance from 40 +/- 6 mL/cm H2O to 20 +/- 6 mL/cm H2O (p = 0.002) and increased venous admixture from 13 +/- 3% to 32 +/- 7% (p < 0.001) in ten swine weighing 33.3 +/- 4.1 kg while they were spontaneously breathing room air. After induction of lung injury, the swine received CPAP (14.7 +/- 3.3 cm H2O) with or without APRV at 10 breaths per minute with a release time of 1.1 +/- 0.2 s. Although mean transpulmonary pressure was significantly greater during CPAP (11.7 +/- 3.3 cm H2O) vs APRV (9.4 +/- 3.8 cm H2O) (p < 0.001), there were no differences in hemodynamic variables. PaCO2 was decreased and pHa was increased during APRV vs CPAP (p = 0.003 and p = 0.005). PaO2 declined from 83 +/- 4 mm Hg to 79 +/- 4 mm Hg (p = 0.004) during APRV, but arterial oxyhemoglobin saturation (96.6 +/- 1.4% vs 96.9 +/- 1.3%) did not. Intrapulmonary venous admixture (9 +/- 3% vs 11 +/- 5%) and oxygen delivery (469 +/- 67 mL/min vs 479 +/- 66 mL/min) were not altered. After treatment periods and removal of CPAP for 60 min, PaO2 and intrapulmonary venous admixture returned to baseline values. DISCUSSION: Intrapulmonary venous admixture, arterial oxyhemoglobin saturation, and oxygen delivery were maintained by APRV at levels induced by CPAP despite the presence of unstable alveoli. Decrease in PaO2 was caused by increase in pHa and decrease in PaCO2, not by deterioration of pulmonary function. We conclude that periodic decrease of airway pressure created by APRV does not cause significant deterioration in oxygenation or lung mechanics.  相似文献   

7.
BACKGROUND: Reperfusion injury is a significant cause of early allograft dysfunction after lung transplantation. We hypothesized that direct pulmonary arterial infusion of an intravascular nitric oxide donor, sodium nitroprusside (SNP), would ameliorate pulmonary reperfusion injury more effectively than inhaled nitric oxide without causing profound systemic hypotension. METHODS: Using an isolated, ventilated, whole-blood-perfused rabbit lung model, we studied the effects of both inhaled and intravascular nitric oxide during lung reperfusion. Group I (control) lungs (New Zealand White rabbits, 3 to 3.5 kg) were harvested en bloc, flushed with Euro-Collins solution, and then stored inflated for 18 hours at 4 degrees C. Lungs were then reperfused with whole blood and ventilated with 60% oxygen for 30 minutes. Groups II, III, and IV received pulmonary arterial infusions of SNP at 0.2, 1.0, and 5.0 micrograms.kg-1.min-1, respectively, whereas group V was ventilated with 60% oxygen and nitric oxide at 80 ppm during reperfusion. RESULTS: Pulmonary arterial infusions of SNP even at 0.2 microgram.kg-1.min-1 (group II) showed significant improvements in pulmonary artery pressure (31.35 +/- 0.8 versus 40.37 +/- 3.3 mm Hg; p < 0.05) and pulmonary vascular resistance (38,946 +/- 1,269 versus 52,727 +/- 3,421 dynes.s/cm-5; p < 0.05) when compared with control (group I) lungs after 30 minutes of reperfusion. Infusions of SNP at 1.0 microgram.kg-1.min-1 (group III) showed additional significant improvements in dynamic airway compliance (1.98 +/- 0.10 versus 1.46 +/- 0.02 mL/mm Hg; p < 0.05), venous-arterial oxygenation gradient (116.00 +/- 24.4 versus 34.43 +/- 2.5 mm Hg; p < 0.05), and wet-to-dry ratio (6.9 +/- 0.9 versus 9.1 +/- 2.2; p < 0.05) when compared with control (group I) lungs. Lungs that received inhaled nitric oxide at 80 ppm (group V) were significantly more compliant (1.82 +/- 0.13 versus 1.46 +/- 0.02 mL/mm Hg; p < 0.05) than control (group I) lungs. CONCLUSIONS: Pulmonary arterial infusion of low-dose SNP during lung reperfusion significantly improves pulmonary hemodynamics, oxygenation, compliance, and edema formation. These effects were achieved at doses of SNP that did not cause profound systemic hypotension. Direct intravascular infusion of SNP via pulmonary arterial catheters could potentially abate reperfusion injury immediately after allograft implantation.  相似文献   

8.
In experimental models of acute lung injury, cyclooxygenase inhibition improves oxygenation, presumably by causing a redistribution of blood flow away from edematous lung regions. This effect on perfusion pattern could also reduce alveolar edema formation. On the other hand, pulmonary pressures usually increase after cyclooxygenase inhibition, an effect that could exacerbate edema accumulation. Therefore we tested the following hypothesis: the total accumulation of pulmonary edema in dogs during a 24- to 28-h period of observation after acute lung injury caused by oleic acid will be less in a group of animals treated with meclofenamate (n = 6) or with the thromboxane-receptor blocker ONO-3708 (n = 5) than in a group of animals treated with oleic acid alone (placebo, n = 6). Lung water concentrations (LWC), the regional pattern of pulmonary perfusion, and protein permeability were measured with the nuclear medicine imaging technique of positron emission tomography. After 24-28 h, LWC was significantly less (P < 0.05) in the ONO-3708 group than in the meclofenamate group (a similar trend was seen compared with the placebo group, P = 0.12). After 24-28 h, pulmonary arterial pressures were highest in the meclofenamate group. Regardless of group, the only significant correlation with the change in LWC was with the integral of pulmonary pressures over the 24- to 28-h period. The data suggest that thromboxane inhibition will reduce edema accumulation in acute lung injury but that this effect depends on reducing as much as possible the simultaneous development of pulmonary hypertension from other causes.  相似文献   

9.
STUDY OBJECTIVE: Data concerning inhaled nitric oxide (iNO) on pediatric ARDS is rare. We investigated the effects of iNO on pediatric ARDS in order to examine the ability to predict a response to iNO, the optimal concentration of iNO, the effects of < or = 1 ppm nitric oxide (NO), and the effect of iNO on PaCO2. SETTING: ICU at Kumamoto (Japan) University Hospital. PATIENTS AND INTERVENTIONS: Seven children with ARDS. The initial responses to 16 ppm NO and the dose-response effects of 0.13 to 16 ppm NO were assessed. MEASUREMENTS AND RESULTS: Sixteen ppm of iNO improved oxygenation in all seven children. The use of iNO significantly increased the ratio of arterial oxygen tension to the fraction of inspired oxygen (PaO2/FIO2). A correlation between the NO-induced increase in PaO2/FIO2 and the baseline PaO2/FIO2 was observed (r=0.93, p<0.01). Dose-response tests showed that the optimal concentration of iNO was < or = 4 ppm, improvements in PaO2/FIO2 could be observed with concentrations of < or = 1 ppm NO, and iNO induced a slight decrease in PaCO2. CONCLUSIONS: In children with ARDS, iNO frequently improves oxygenation and induces a slight decrease in PaCO2, with the baseline PaO2/FIO2 functioning as a predictor of all NO response. Improvements of PaO2 and PaCO2 were observed with concentrations of iNO of < or = 1 ppm, a level in which the risk of a toxic reaction in children is minimal. Effects on outcome need verification in larger controlled trials.  相似文献   

10.
A three-dimensional magnetic resonance imaging (MRI) method to measure pulmonary edema and lung microvascular barrier permeability was developed and compared with conventional methods in nine mongrel dogs. MRIs were obtained covering the entire lungs. Injury was induced by injection of oleic acid (0.021-0.048 ml/kg) into a jugular catheter. Imaging followed for 0.75-2 h. Extravascular lung water and permeability-related parameters were measured from multiple-indicator dilution curves. Edema was measured as magnetic resonance signal-to-noise ratio (SNR). Postinjury wet-to-dry lung weight ratio was 5.30 +/- 0.38 (n = 9). Extravascular lung water increased from 2.03 +/- 1.11 to 3.00 +/- 1.45 ml/g (n = 9, P < 0.01). Indicator dilution studies yielded parameters characterizing capillary exchange of urea and butanediol: the product of the square root of equivalent diffusivity of escape from the capillary and capillary surface area (D1/2S) and the capillary permeability-surface area product (PS). The ratio of D1/2S for urea to D1/2S for butanediol increased from 0.583 +/- 0.027 to 0.852 +/- 0.154 (n = 9, P < 0.05). Whole lung SNR at baseline, before injury, correlated with D1/2S and PS ratios (both P < 0.02). By using rate of SNR change, the mismatch of transcapillary filtration flow and lymph clearance was estimated to be 0.2-1.8 ml/min. The filtration coefficient was estimated from these values. Results indicate that pulmonary edema formation during oleic acid injury can be imaged regionally and quantified globally, and the results suggest possible regional quantification by using three-dimensional MRI.  相似文献   

11.
OBJECTIVE: To look for the effects of inhaled nitric oxide on oxygenation and pulmonary hemodynamics during acute hypercapnia in acute respiratory failure. DESIGN: Prospective, randomized, experimental study. SETTING: University research laboratory. SUBJECTS: Ten piglets, weighing 9 to 13 kg. INTERVENTIONS: Acute respiratory failure was induced by oleic acid infusion and repeated lung lavages with 0.9% sodium chloride. The protocol consisted of three randomly assigned periods with different PaCO2 levels. Tidal volume was reduced to induce hypercapnia. Inspiratory time was prolonged to achieve similar mean airway pressures. During permissive hypercapnia, pH was not corrected. At each PaCO2 period, the animals were ventilated with inhaled nitric oxide of 10 parts per million and without nitric oxide inhalation. MEASUREMENTS AND MAIN RESULTS: Continuous hemodynamic monitoring included right atrial, mean pulmonary arterial, and mean systemic arterial pressures, arterial and mixed venous oxygen saturations, and continuous flow recording at the pulmonary artery. In addition, airway pressures, tidal volumes, dynamic lung compliance and airway resistance, end-tidal CO2 concentrations, and arterial and mixed venous blood gases were measured. Data were obtained at baseline and after lung injury, at normocapnia, at two levels of hypercapnia with and without nitric oxide inhalation. Acute hypercapnia resulted in a significant decrease in blood pH and a significant increase in mean pulmonary arterial pressure. There was no significant change in PaO2 during normocapnia and hypercapnia. Inhaled nitric oxide significantly decreased the mean pulmonary arterial pressure during both hypercapnic periods. It significantly improved oxygenation during both normocapnia and hypercapnia. CONCLUSIONS: Acute hypercapnia resulted in a significant increase in pulmonary arterial pressure without influencing oxygenation and cardiac output. Inhaled nitric oxide significantly reduced the pulmonary hypertension induced by acute permissive hypercapnia but did not influence the flow through the pulmonary artery. Inhaled nitric oxide significantly improved oxygenation in this model of acute lung injury during normocapnia and acute hypercapnia.  相似文献   

12.
We have undertaken rebreathing measurements of functional residual capacity (FRC), carbon monoxide diffusing capacity (DLCO), and diffusing coefficient (KCO) during positive pressure ventilation in 15 patients with adult respiratory distress syndrome (ARDS). Measurements of oxygenation (PaO2:FIO2 ratio) and lung injury score (LIS) were also recorded. Eight patients subsequently died (mortality of 53%). There was no significant difference in mean FRC, PaO2:FIO2, or LIS at presentation between survivors and nonsurvivors. However, both DLCO and KCO at presentation were significantly greater in survivors than nonsurvivors. In a separate study of nine patients with less severe lung injury, pulmonary capillary blood volume, derived from values of DLCO measured at two different values of FIO2, correlated with invasive pulmonary vascular resistance (PVR) measurements (r = 0.84, p < 0.01). DLCO measurements can be successfully undertaken in patients being ventilated with acute lung injury and may be a useful, noninvasive method of assessing the pulmonary circulation. The lowest values of DLCO were recorded in patients who subsequently did not survive.  相似文献   

13.
Left single lung transplantation was performed under perioperative extracorporeal membrane oxygenation (ECMO) support for a patient of primary pulmonary hypertension. Continuous ECMO in this patient for one day after the transplantation decreased the pulmonary blood flow and probably served to minimize the potential complication of reperfusion edema of the graft. During this period, the ECMO was gradually weaned so that the grafted lung could adapt itself to the gradually increased blood flow through it. The patient was extubated without difficulty 2 days alter the removal of ECMO and made a smooth recovery.  相似文献   

14.
STUDY OBJECTIVE: To assess the effects of adjunctive treatment with N-acetyl-L-cysteine (NAC) on hemodynamics, oxygen transport variables, and plasma levels of cytokines in patients with septic shock. DESIGN: Prospective, randomized, double-blind, placebo-controlled study. SETTING: A 24-bed medicosurgical ICU in a university hospital. PATIENTS: Twenty-two patients included within 4 h of diagnosis of septic shock. INTERVENTIONS: Patients were randomly allocated to receive either NAC (150 mg/kg bolus, followed by a continuous infusion of 50 mg/kg over 4 h; n= 12) or placebo (n=10) in addition to standard therapy. MEASUREMENTS: Plasma concentrations of tumor necrosis factor-alpha (TNF), interleukin (IL)-6, IL-8, IL-10, and soluble tumor necrosis factor-alpha receptor-p55 (sTNFR-p55) were measured by sensitive immunoassays at 0, 2, 4, 6 and 24 h. Pulmonary artery catheter-derived hemodynamics, blood gases, hemoglobin, and arterial lactate were measured at baseline, after infusion (4 h), and at 24 h. RESULTS: NAC improved oxygenation (PaO2/FIO2 ratio, 214+/-97 vs 123+/-86; p<0.05) and static lung compliance (44+/-11 vs 31+/-6 L/cm H2O; p<0.05) at 24 h. NAC had no significant effects on plasma TNF, IL-6, or IL-10 levels, but acutely decreased IL-8 and sTNFR-p55 levels. The administration of NAC had no significant effect on systemic and pulmonary hemodynamics, oxygen delivery, and oxygen consumption. Mortality was similar in both groups (control, 40%; NAC, 42%) but survivors who received NAC had shorter ventilator requirement (7+/-2 days vs 20+/-7 days; p<0.05) and were discharged earlier from the ICU (13+/-2 days vs 32+/-9 days; p<0.05). CONCLUSION: In this small cohort of patients with early septic shock, short-term IV infusion of NAC was well-tolerated, improved respiratory function, and shortened ICU stay in survivors. The attenuated production of IL-8, a potential mediator of septic lung injury, may have contributed to the lung-protective effects of NAC.  相似文献   

15.
OBJECTIVE: To study the effects of surfactant administration on the left lung after surgical repair of descending aortic aneurysms on postoperative respiratory failure. DESIGN: Randomized, prospective, controlled study. SETTING: Clinical investigation. PATIENTS: Eleven patients with respiratory failure associated with thoracic aneurysm surgery. INTERVENTION: Eleven adult patients with acute respiratory failure (PaO2/FIO2 <300 torr [<40 kPa]) after surgical repair of descending aortic aneurysms. The artificial surfactant (30 mg/kg) was given to the operated side of the lung by intrabronchial instillation in six patients (surfactant group), whereas nothing was instilled in the other five patients (control group). MEASUREMENTS AND MAIN RESULTS: Hemodynamic parameters, blood gas, and peak inspiratory pressure were measured at the end of surgery, before surfactant instillation, and at 2, 6, 12, 24, and 48 hrs after surfactant instillation. At the end of surgery, the mean +/- SEM values of the PaO2/FIO2 ratio were 204 +/- 25 torr (27.2 +/- 3.3 kPa) in the surfactant group and 240 +/- 26 torr (32.0 +/- 3.5 kPa) in the control group. After 2, 6, 12, and 48 hrs, improvements in the PaO2/FIO2 ratios were observed in the surfactant group, whereas the control group showed no improvement. Two hours after surfactant instillation, the mean value in the PaO2/FIO2 ratio was significantly higher in the surfactant group (318 +/- 24 torr [42.4 +/- 3.2 kPa]) (p < .05) compared with the control group values (240 +/- 34 torr [32 +/- 4.5 kPa]). CONCLUSION: Surfactant administration immediately after surgery restored gas exchange in postoperative respiratory failure associated with thoracic aneurysm surgery.  相似文献   

16.
BACKGROUND: In the adult respiratory distress syndrome, nitric oxide (NO) inhalation improves oxygenation through reducing ventilation-perfusion mismatching, but detailed information on the pulmonary effects of NO inhalation in septic shock is scarce. The present study investigated the effects of inhaled NO on alveolar dead space (Vdalv) and venous admixture as well as on respiratory system compliance (Crs) and respiratory system resistance (Rrs) in a porcine model of septic shock. Protective effects of NO are discussed. METHODS: Thirteen anaesthetised and ventilated pigs were given an infusion of endotoxin for an observation time of 220 min to induce acute lung injury (ALI). In the NO-early group (n=6), an inhalation of 60 ppm NO was started simultaneously with the endotoxin infusion and continued for 190 min. In 7 control/NO-late animals, 60 ppm NO was administered for 30 min following 190 min of endotoxin infusion. Haemodynamics, single-breath CO2-, pressure-, and flow signals were recorded. RESULTS: Endotoxin induced haemoconcentration, pulmonary vasoconstriction, and a decrease in Crs, while venous admixture, Vdalv, and Rrs increased. In the NO-early group, the pulmonary vasoconstriction was attenuated, no increase in pulmonary venous admixture or in Vdalv was seen before cessation of NO, and the improvements in oxygenation outlasted the NO inhalation. In the control/NO-late group, the NO inhalation reversed the changes in dead space and venous admixture. NO had no effect on the changes in respiratory mechanics. CONCLUSION: In porcine ALI, 60 ppm NO diminishes pulmonary vasoconstriction and improves gas exchange by reducing pulmonary venous admixture and alveolar dead space, but does not prevent a fall in Crs. NO inhalation may help prevent long-lasting pulmonary failure.  相似文献   

17.
The aim of this study was to evaluate the effect of isoflurane and sevoflurane on oxygenation and shunt fraction during one-lung ventilation (OLV). Twenty patients undergoing lobectomy for lung cancer and scheduled for long-term OLV were enrolled in this study. Patients were allocated to treatment with either isoflurane or sevoflurane. Arterial oxygenation, shunt fraction, and hemodynamics were evaluated at the end of two-lung ventilation; 20 min after the initiation of OLV; 20 min after the application of 4-cm positive end-expiratory pressure (PEEP) to the dependent lung; 20 min after 8-cm PEEP; and 20 min after the conversion from OLV to two-lung ventilation. There was no significant difference between isoflurane and sevoflurane with regard to oxygenation, shunt fraction, or hemodynamics during OLV. PaO2 values after the application of 4-cm PEEP increased from 131.1 +/- 11.8 mm Hg to 190.6 +/- 22.9 mm Hg in the isoflurane group (P < 0.05) and from 127.2 +/- 14.3 mm Hg to 192.4 +/- 26.9 mm Hg in the sevoflurane group (P < 0.05). The selection of either isoflurane or sevoflurane for OLV was made without regard to arterial oxygenation and shunt fraction. PEEP application to the dependent lung is useful for improving oxygenation during OLV, but 8-cm PEEP had no added effect compared with 4-cm PEEP. Implications: We compared the effects of isoflurane and sevoflurane on oxygenation, hemodynamics, and shunt fraction during one-lung ventilation in 20 patients undergoing scheduled lobectomy for lung cancer. There was no significant difference between isoflurane and sevoflurane with regard to oxygenation, shunt fraction, and hemodynamics during one-lung ventilation. The application of 4-cm positive end-expiratory pressure increased the partial pressure of arterial oxygen during one-lung ventilation.  相似文献   

18.
BACKGROUND: There is evidence that inducible nitric oxide (NO) may be directly related to the process of allograft rejection. Because of its strong pulmonary vasodilatory activity, inhaled NO (INO) has recently been used as a therapeutic option for allograft dysfunction after lung transplantation. The action of inducible NO and inhaled NO seems contradictory for preserving posttransplantation pulmonary allograft function. INO used for lung transplant recipients may actually enhance acute allograft rejection. We studied the effect of INO on acute allograft rejection with a rat pulmonary allograft model. METHOD: A total of 24 left lung allotransplantations were performed from Lewis donors into F344 recipients. Animals were divided into two groups and inhaled either room air alone or 20 ppm NO with room air in a closed chamber immediately after transplantation until rats were killed on days 7 and 14. During observation, NO uptake was monitored by measuring serum NO2-/NO3- level. Acute rejection was evaluated by use of a semiquantitative radiographic scoring method (aeration score: 0 to 6, opaque to normal appearance) and rejection score (0 to 4, no sign of rejection to diffuse mononuclear infiltration). RESULTS: Markedly elevated serum NO2-/NO3- levels were observed in the NO inhalation group compared with levels in the normal air inhalation control group (110.8 +/- 25.3 vs 16.3 +/- 4.0 micromol/L/ml on day 7, p < 0.01; 107.0 +/- 30.9 vs 16.8 +/- 4.8 micromol/L/ml on day 14, p < 0.01). However, no positive effect of INO on acute rejection was found histologically or radiographically. CONCLUSION: The effect of INO on acute rejection is likely so minimal as not to be clinically relevant.  相似文献   

19.
BACKGROUND: Inhaled nitric oxide (NO) improves arterial oxygenation in patients with acute lung injury (ALI) by selectively dilating pulmonary vessels perfusing ventilated lung areas. It can be hypothesized that NO uptake from the lung decreases with increasing ventilation perfusion mismatch. This study was undertaken to determine the factors influencing the fluctuation of tracheal NO concentration over the respiratory cycle as an index of NO pulmonary uptake in patients with ALI. METHODS: By using a prototype system (Opti-NO) delivering a constant flow of NO only during the inspiratory phase, 3 and 6 ppm of NO were administered during controlled mechanical ventilation into a lung model and to 11 patients with ALI. All patients had a thoracic computed tomography (CT) scan. Based on an analysis of tomographic densities, lungs were divided into three zones: normally aerated (-1.000 to -500 Hounsfield units [HU]), poorly aerated (-500 to -100 HU), and nonaerated (-100 to +100 HU), and the volume of each zone was computed. Concentrations of NO in the inspiratory limb and trachea were continuously measured by a fast-response chemiluminescence apparatus. RESULTS: In the lung model, tracheal NO concentration was stable with minor fluctuation. In contrast, in patients, tracheal NO concentration fluctuated widely during the respiratory cycle (55 +/- 10%). Because uptake of NO from the lungs was absent in the lung model but present in the patients, this fluctuation was considered as an index of pulmonary uptake of NO. This was further substantiated by (1) the coincidence of the peak and minimum tracheal NO concentration with the end-inspiratory and end-expiratory phases, respectively, and (2) continued decrease of tracheal NO concentration during prolonged expiratory phase. In patients with ALI, the fluctuation of tracheal NO concentration expressed as the difference between inspiratory and expiratory NO concentrations divided by inspiratory NO concentration was greater at 6 ppm than at 3 ppm (P < 0.01), was linearly correlated with normally aerated lung volume, inversely correlated with alveolar dead space and with poorly aerated lung volume. CONCLUSION: In patients with ALI, fluctuation of tracheal NO concentration over the respiratory cycle can be considered as an index of NO uptake from the lungs that depends on aerated lung volume and perfusion of ventilated lung areas. At bedside, it may be used to follow the evolution of ventilation-perfusion mismatch.  相似文献   

20.
OBJECTIVE: To evaluate the efficacy of treating endotoxin-induced lung injury with single dose exogenous surfactant and positive end-expiratory pressure (PEEP). DESIGN: Prospective trial. SETTING: Laboratory at a university medical center. SUBJECTS: Nineteen certified healthy pigs, weighing 15 to 20 kg. INTERVENTIONS: Pigs were anesthetized and surgically prepared for hemodynamic and lung function measurements. Animals were randomized into four groups: a) Control pigs (n = 4) received an intravenous infusion of saline without Escherichia colilipopolysaccharide (LPS); b) the LPS group (n = 5) received an intravenous infusion of saline containing LPS (100 microg/kg); c) the PEEP plus saline group (n = 5) received an intravenous infusion of saline containing LPS. Two hours after LPS infusion, saline was instilled into the lung as a control for surfactant instillation, and the animals were placed on 7.5 cm H2O of PEEP; d) the PEEP plus surfactant group (n = 5) received an intravenous infusion of saline containing LPS. Two hours following LPS infusion, surfactant (50 mg/kg) was instilled into the lung and the animals were placed on 7.5 cm H2O of PEEP. PEEP was applied first and surfactant or saline was instilled into the lung while maintaining positive pressure ventilation. All groups were studied for 6 hrs after the start of LPS injection. At necropsy, bronchoalveolar lavage was performed and the right middle lung lobe was fixed for histologic analysis. MEASUREMENTS AND MAIN RESULTS: Compared with LPS without treatment, PEEP plus surfactant significantly increased PaO2 (PEEP plus surfactant = 156.6 +/- 18.6 [SEM] torr [20.8 +/- 2.5 kPa]; LPS = 79.2 +/- 21.9 torr [10.5 +/- 2.9 kPa]; p<.05), and decreased venous admixture (PEEP plus surfactant = 12.5 +/- 2.0%; LPS = 46.9 +/- 14.2%; p< .05) 5 hrs after LPS infusion. These changes were not significant 6 hrs after LPS infusion. PEEP plus surfactant did not alter ventilatory efficiency index (VEI = 3800/[peak airway pressure - PEEP] x respiratory rate x PacO2), or static compliance as compared with LPS without treatment at any time point. Cytologic analysis of bronchoalveolar lavage fluid showed that surfactant treatment significantly increased the percentage of alveolar neutrophils as compared with LPS without treatment (PEEP plus surfactant = 39.1 +/- 5.5%; LPS = 17.4 +/- 6.6%; p< .05). Histologic analysis showed that LPS caused edema accumulation around the airways and pulmonary vessels, and a significant increase in the number of sequestered leukocytes (LPS group = 3.4 +/- 0.2 cells/6400 micro2; control group = 1.3 +/- 0.1 cells/6400 micro2; p < .05). PEEP plus saline and PEEP plus surfactant significantly increased the total number of sequestered leukocytes in the pulmonary parenchyma (PEEP plus surfactant = 8.2 +/- 0.7 cells/6400 micro2; PEEP plus saline = 3.9 +/- 0.2 cells/6400 micro2; p <.05) compared with the control and LPS groups. CONCLUSIONS: We conclude that PEEP plus surfactant treatment of endotoxin-induced lung injury transiently improves oxygenation, but is unable to maintain this salutary effect indefinitely. Thus, repeat bolus dosing of surfactant or bolus treatment followed by continuous aerosol delivery may be necessary for a continuous beneficial effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号