首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
铁基触媒合成金刚石形成的金属包膜的组织结构   总被引:12,自引:4,他引:8  
利用SEM,TEM和Raman光谱检测手段,研究了铁基触媒合成金刚石形成的金属包膜的组织结构。结果表明:包膜与合成后触媒的组织形貌不完全相同,包膜内无金刚石,在靠近金刚石的包膜内层没有石墨和无定型碳。据此并结合包膜所起的溶碳和催化作用分析,在高温高压下,金刚石成核和生长的碳来源于靠近金刚石的包膜层(Fe,Ni)3C的分解产物,分解后的(Fe,Ni)3C转变为γ—(Fe,Ni),这时的γ—(Fe,Ni)与末分解的(Fe,Ni)3C保持晶面平行关系。  相似文献   

2.
3.
采用不同粒度的金刚石粉研磨硬质合金基体表面,然后采用酸碱两步法处理基体,清洗后利用热丝化学气相沉积法(HFCVD)沉积金刚石涂层.扫描电镜观察表面金刚石形貌,洛氏硬度压痕法评价涂层结合情况.实验结果表明适当的表面粗糙度可以有效地提高膜基结合水平.  相似文献   

4.
采用Ti/Si/碳黑/Al/金刚石粉体为原料,通过热爆反应,在金刚石颗粒的表面形成了陶瓷涂层。采用XRD和SEM分析观察了金刚石颗粒表面涂层的物相组成和显微形貌。结果表明:热爆反应后基体的组成为Ti3SiC2和TiC。添加金刚石对基体的物相组成影响很小。在原料中添加10%~40%的金刚石均可使反应后得到的金刚石表面具有良好的涂覆。反应后在金刚石表面形成了以TiC、SiC和Ti3SiC2的多元陶瓷涂层。  相似文献   

5.
铁基触媒合成金刚石形成的金属包膜成分的研究   总被引:9,自引:2,他引:7  
利用电子探针(EPMA)和X射线光电子能谱(XPS)研究了包围金刚石单晶的铁基金属包膜和触媒的成分分布。结果表明,在金刚石生长过程中,接近金刚石单晶的包膜内层中的碳含量是变化的,但均高于接近金刚石的触媒层。然而,与包围金刚石单晶的触媒表面相比,包膜表面碳含量低、铁含量高。分析认为,高温高压下,金刚石生长的碳源主要来自于包膜,但碳并非均匀地在包膜熔体内层向金刚石扩散。结合前期研究发现的“包膜内层无石墨和无定形碳结构”的事实分析,金刚石生长所需的碳极有可能来源于包膜内层铁碳化物的瞬间分解,结果导致包膜表面瞬间碳含量低、铁含量高。  相似文献   

6.
化学气相沉积碳化硅涂层缺陷形成的机制及控制   总被引:3,自引:2,他引:1  
利用扫描电镜对化学气相沉积碳化硅防氧化涂层的表面和断口进行观察,探讨了涂层裂纹、涂层网状缺陷和涂层面缺陷的形成机理。从涂层沉积工艺角度出发,对涂层缺陷控制进行探索,慢速沉积对上述涂层缺陷,特别是面缺陷的控制有显著效果,能获得无面缺陷的多层涂层。氧化实验结果表明:具有慢沉积多层涂层的三维C/SiC在1300℃空气中表现为缓慢的氧化质量增加。  相似文献   

7.
金属蜂窝载体表面负载活性氧化铝涂层的研究   总被引:3,自引:1,他引:2  
采用高温氧化法对合金FeCrAl金属基体进行预处理,使用AlOOH胶浸渍活性涂层,考察了氧化温度、氧化时间、料浆配方、制备条件以及焙烧温度等因素对涂层的影响。利用XRD、SEM、BET和超声波振动等方法研究了样品的表观性能和涂层的结合性能。结果表明,950 ℃氧化10 h的氧化处理可以在金属基体上形成粗糙的表层,增加涂层粘结能力。在料浆的制备过程中,加入添加剂以及提高活性涂层的焙烧温度都可以明显提高涂层与金属载体的结合力,得到的涂层牢固,比表面积达212 m2·g-1,满足工业应用要求。  相似文献   

8.
利用卤化物还原原理,以Ti粉和I2粉为反应原料,通过化学气相沉积的方法在Al2O3陶瓷基体上制备了金属Ti涂层。考察了原料配比、加热温度及保温时间等工艺参数对涂层沉积的影响。通过X射线衍射仪分析了涂层的物相组成。利用扫描电子显微镜及能谱仪对涂层的微观组织形貌及成分进行了分析。采用座滴法考察铜与沉积了涂层的氧化铝陶瓷间的润湿性。研究结果表明,化学气相沉积法在氧化铝陶瓷表面制备Ti涂层的适宜工艺参数为:Ti与I2的质量比=1∶3,沉积温度为1 100℃,沉积时间为60min。所获得的Ti涂层纯度较高,具有明显的(110)晶面择优取向性,涂层与陶瓷结合良好。铜与涂层间的润湿角在1 113℃时为57°。  相似文献   

9.
10.
11.
采用等离子体增强化学气相沉积技术(PECVD)在316L不锈钢上制备类金刚石(DLC)涂层,系统地研究了所制备类金刚石涂层的表面形貌与结构、不同载荷下的摩擦磨损行为以及NaCl溶液(3.5 wt%)中不同腐蚀时间下的腐蚀行为。研究结果表明:制备的DLC涂层是由sp3键和sp2键杂化形成的非晶碳结构,其中sp2-C含量大于sp3-C,具有典型的类金刚石碳特征;DLC涂层结构致密,表面平滑,粗糙度仅为Ra=12.1 nm,能够与316L不锈钢基体结合紧密;DLC涂层的接触角为59.44°,说明涂层表现出一定的润湿性;摩擦磨损测试结果表明DLC涂层具有良好的润滑效果,摩擦系数能低至0.07~0.16,磨损率低至(3.85~6.71)×10-7 mm3/(N·m);电化学测试得到DLC涂层自腐蚀电流密度为6.72×10-6 A·cm-2,阻抗模值高达7.05×104Ω·cm-2...  相似文献   

12.
尽管金刚石涂层刀具具有许多独一无二的特性,但是由于金刚石晶粒粗大,容易造成刀具表面粗糙,所以阻碍了其在精细加工领域的应用.文章开发了一种金刚石晶粒细小的新型金刚石光滑涂层,刀具表面粗糙度最大值小于1μm.采用这种涂层的立铣刀具进行了一系列有色金属切削测试,通过观察发现,精加工后的器件表面粗糙度最大值小于1μm,获得了和使用无涂层硬质合金立铣刀表面粗糙度一样的加工效果.并且,没有对表面涂层的耐磨性和刀具使用寿命产生任何影响.  相似文献   

13.
采用化学气相沉积法,在1 100 ℃,在碳纤维增强碳化硅复合材料表面制备SiC涂层,研究了涂层连续沉积和分4次沉积(每次沉积时间为6 h)所制备的SiC涂层的微观结构和涂层样品的氧化性能.结果表明:两种SiC涂层的厚度均约为40 μm,且4次沉积制备的SiC涂层为一个连续的整体.涂层连续沉积时,表面只出现裸露裂纹;分4次沉积制备时,表面出现大量边缘有SiC生长锥的附着裂纹,附着裂纹在高温氧化时易发生自愈合.与连续涂层样品相比,4次涂层能显著提高C/SiC样品的抗氧化性能.4次涂层样品经1 400 ℃,50 h氧化后,质量损失为0.88%,质量损失速率稳定在6.30 × 10-5 g/(cm2?h),且4次涂层样品具有优异的抗热震性能.  相似文献   

14.
将NiCl2·6H2O经过脱水干燥后得到的NiCl2粉末作为原料,采用化学气相沉积技术通过H2还原反应,在Al2O3陶瓷表面沉积了Ni涂层。研究了涂层的相组成、涂层与Al2O3陶瓷结合力和涂层与铜熔液间的润湿行为。结果表明:制备的涂层中的主要组分为Ni,Ni涂层均匀、致密,厚度可达40μm,且涂层与陶瓷之间的结合良好。座滴法测得沉积Ni涂层的Al2O3陶瓷与Cu之间的润湿角为30.15°,表明涂层明显改善了陶瓷与金属间的润湿性。  相似文献   

15.
使用以FeB为硼源的含硼粉末冶金铁基触媒,在六面顶压机上高温高压合成含硼金刚石单晶.金相观察发现,金刚石金属包覆膜由粗大的板条状渗碳体和细密的莱氏体共晶组织构成.X射线衍射(XRD)发现,金属包覆膜的物相组成为(Fe,Ni)3C、(Fe,Ni)3(C,B)、石墨(Gr)以及γ-(Fe,Ni)(A).使用透射电镜(TEM)在包覆膜中发现了颗粒状的Fe3(C,B),条状的γ-(Fe,Ni) 和颗粒状的Fe23(C,B)6.电子探针分析(EPMA)结果表明,硼元素在包覆膜中存在浓度梯度,越接近含硼金刚石,硼元素的含量越高.分析认为,高温高压下硼是以铁-碳-硼化合物的形式通过金属包覆膜向金刚石晶体扩散的,Fe3(C,B)或(Fe,Ni)3(C,B)极有可能是含硼金刚石生长的直接碳源和硼源.  相似文献   

16.
17.
18.
采用溶胶-凝胶法在金刚石表面涂覆了铝-硅-硼氧化物涂层,并用扫描电子显微镜、综合热分析仪和抗压强度仪对涂层的彤貌、结构以及涂膜前后金刚石的氧化行为和单颗粒金刚石的抗压强度进行了表征.结果表明:所制得的涂层在金刚石颗粒表面分布较均匀,结构致密,可将金刚石颗粒的起始氧化温度提高100℃左右,并能有效地延缓金刚石在高温环境下的氧化速度,同时还可以提高金刚石单颗粒抗压强度约22.75%.  相似文献   

19.
将化学气相沉积在石墨基片上的SiC-BxC复合涂层在02(8 kPa)/H2O(14 kPa)/Ar(78 kPa)的模拟气氛中,分别加热到700,1 000℃和1 200℃ 处理10h.利用扫描电镜、X射线衍射、能谱分析、显微Raman和Fourier变换红外光谱仪研究其微观结构.结果表明:复合涂层中的BxC层在700~ 1 000℃的模拟环境中会被完全氧化成B2O3和H38O3:在1000~1200℃的模拟环境中,BxC层的氧化产物迅速挥发.经高温模拟环境处理后,复合 涂层中生成了硼硅酸盐玻璃,且各氧化产物和SiC层的结晶度随处理温度的升高而下降.基于微观分析结果,对SiC-BxC复合涂层的自愈合抗氧化 性能进行了分析.  相似文献   

20.
将化学气相沉积在石墨基片上的SiC-BxC复合涂层在O2(8kPa)/H2O(14kPa)/Ar(78kPa)的模拟气氛中,分别加热到700,1000℃和1200℃处理10h。利用扫描电镜、X射线衍射、能谱分析、显微Raman和Fourier变换红外光谱仪研究其微观结构。结果表明:复合涂层中的BxC层在700~1000℃的模拟环境中会被完全氧化成B2O3和H3BO3;在1000~1200℃的模拟环境中,BxC层的氧化产物迅速挥发。经高温模拟环境处理后,复合涂层中生成了硼硅酸盐玻璃,且各氧化产物和SiC层的结晶度随处理温度的升高而下降。基于微观分析结果,对SiC-BxC复合涂层的自愈合抗氧化性能进行了分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号