共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the importance of the vascular endothelial growth factor (VEGF)/VEGF tyrosine kinase receptor (VEGFR) system in angiogenesis is well established, very little is known about the regulation of VEGFR expression in vascular endothelial cells. We have cloned partial cDNAs encoding bovine VEGFR-1 (flt) and -2 (flk-1) and used them to study VEGFR expression by bovine microvascular- and large vessel-derived endothelial cells. Both cell lines express flk-1, but not flt. Transforming growth factor beta 1 (TGF-beta 1) reduced the high affinity 125I-VEGF binding capacity of both cell types in a dose-dependent manner, with a 2.0-2.7-fold decrease at 1-10 ng/ml. Cross-linking experiments revealed a decrease in 125I-VEGF binding to a cell surface monomeric protein corresponding to Flk-1 on the basis of its affinity for VEGF, molecular mass (185-190 kDa), and apparent internalization after VEGF binding. Immunoprecipitation and Western blot experiments demonstrated a decrease in Flk-1 protein expression, and TGF-beta 1 reduced flk-1 mRNA levels in a dose-dependent manner. These results imply that TGF-beta 1 is a major regulator of the VEGF/Flk-1 signal transduction pathway in endothelial cells. 相似文献
2.
RG Gedeit 《Canadian Metallurgical Quarterly》1996,24(9):1543-1546
OBJECTIVE: To determine the tumor necrosis factor (TNF) receptor type involved in induction of E-selectin expression on vascular endothelial cells. DESIGN: Prospective, in vitro repeated-measures analysis of cellular responses. SETTING: Research laboratory in an academic medical center. SUBJECTS: Cultured human umbilical vein endothelial cells. INTERVENTIONS: Human umbilical vein endothelial cells were incubated with recombinant human TNF (rhTNF) to induce the expression of E-selectin on their surfaces. To block rhTNF from binding to receptors, the cells were incubated with monoclonal antibodies against TNF receptors (anti-CD120a and anti-CD120b). TNF-induced E-selectin expression of the endothelial cells, with and without blocking antibodies, was then determined using indirect immunofluorescence and flow cytometry. MEASUREMENTS AND MAIN RESULTS: Blocking of either CD120a or CD120b receptors individually resulted in inhibition of TNF-induced E-selectin expression on human umbilical vein endothelial cells. When both antibodies were added, the inhibition of TNF-induced E-selectin expression was synergistic. Inhibition of E-selectin expression was dependent on both TNF concentrations and antibody concentrations. CONCLUSIONS: Both CD120a and CD120b receptors are involved in TNF-induced E-selectin expression on human umbilical vein endothelial cells. Blocking of both or one receptor type can reduce or totally inhibit expression of E-selectin on human umbilical vein endothelial cells, but the response is dependent on both TNF and antibody concentrations. 相似文献
3.
4.
5.
B Olofsson E Korpelainen MS Pepper SJ Mandriota K Aase V Kumar Y Gunji MM Jeltsch M Shibuya K Alitalo U Eriksson 《Canadian Metallurgical Quarterly》1998,95(20):11709-11714
The vascular endothelial growth factor (VEGF) family has recently expanded by the identification and cloning of three additional members, namely VEGF-B, VEGF-C, and VEGF-D. In this study we demonstrate that VEGF-B binds selectively to VEGF receptor-1/Flt-1. This binding can be blocked by excess VEGF, indicating that the interaction sites on the receptor are at least partially overlapping. Mutating the putative VEGF receptor-1/Flt-1 binding determinants Asp63, Asp64, and Glu67 to alanine residues in VEGF-B reduced the affinity to VEGF receptor-1 but did not abolish binding. Mutational analysis of conserved cysteines contributing to VEGF-B dimer formation suggest a structural conservation with VEGF and platelet-derived growth factor. Proteolytic processing of the 60-kDa VEGF-B186 dimer results in a 34-kDa dimer containing the receptor-binding epitopes. The binding of VEGF-B to its receptor on endothelial cells leads to increased expression and activity of urokinase type plasminogen activator and plasminogen activator inhibitor 1, suggesting a role for VEGF-B in the regulation of extracellular matrix degradation, cell adhesion, and migration. 相似文献
6.
JB Prins CU Niesler CM Winterford NA Bright K Siddle S O'Rahilly NI Walker DP Cameron 《Canadian Metallurgical Quarterly》1997,46(12):1939-1944
Tumor necrosis factor-alpha (TNF-alpha) production by adipocytes is elevated in obesity, as shown by increased adipose tissue TNF-alpha mRNA and protein levels and by increased circulating concentrations of the cytokine. Furthermore, TNF-alpha has distinct effects on adipose tissue including induction of insulin resistance, induction of leptin production, stimulation of lipolysis, suppression of lipogenesis, induction of adipocyte dedifferentiation, and impairment of preadipocyte differentiation in vitro. Taken together, these effects all tend to decrease adipocyte volume and number and suggest a role for TNF-alpha in limiting increase in fat mass. The aim of the present study was to determine if TNF-alpha could induce apoptosis in human adipose cells, hence delineating another mechanism by which the cytokine could act to limit the development of, or extent of, obesity. Cultured human preadipocytes and mature adipocytes in explant cultures were exposed in vitro to human TNF-alpha at varying concentrations for up to 24 h. Apoptosis was assessed using morphological (histology, nuclear morphology following acridine orange staining, electron microscopy) and biochemical (demonstration of internucleosomal DNA cleavage by gel electrophoresis and of annexin V staining using immunocytochemistry) criteria. In control cultures, apoptotic indexes were between 0 and 2.3% in all experiments. In the experimental systems, TNF-alpha induced apoptosis in both preadipocytes and adipocytes, with indexes between 5 and 25%. Therefore, TNF-alpha induces apoptosis of human preadipocytes and adipocytes in vitro. In view of the major metabolic role of TNF-alpha in human adipose tissue, and the knowledge that adipose tissue is dynamic (with cell acquisition via preadipocyte replication/differentiation and cell loss via apoptosis), these findings describe a further mechanism whereby adipose tissue mass may be modified by TNF-alpha. 相似文献
7.
T Masaki H Yoshimatsu S Chiba S Hidaka D Tajima T Kakuma M Kurokawa T Sakata 《Canadian Metallurgical Quarterly》1999,1436(3):585-592
A family of uncoupling proteins (UCPs), free fatty acid anion transporters, plays a crucial role in energy homeostatic thermoregulation. Tumor necrosis factor-alpha (TNF-alpha), a member of the cytokine family, is well known as an endogenous pyrogen. To evaluate the interaction of TNF-alpha with UCPs in thermogenesis, effects of TNF-alpha on rat UCP gene expression were examined in intrascapular brown adipose tissue (BAT), epididymal white adipose tissue (WAT) and soleus muscle (Muscle). Administration of TNF-alpha elevated rectal temperature by 0.7 degree C as well as serum leptin which peaked at 6 h, compared with saline controls. BAT UCP1 mRNA expression was increased by 1.2-fold at 6 h after the TNF-alpha treatment and decreased by 0.8-fold at 16 h after the treatment. In contrast to UCP1 expression in BAT, UCP2 mRNA expressions in BAT, WAT, and Muscle was increased to reach maximum levels of 1.3-, 1.6- and 1.8-fold, respectively, at 16 h after the treatment. UCP3 mRNA in Muscle, but not in BAT or WAT, was exclusively up-regulated by 1.7-fold at 16 h after the treatment. These results indicate that TNF-alpha up-regulates UCP gene expression differentially and tissue dependently, and add novel insights into thermogenesis under conditions of malignancy and inflammation. 相似文献
8.
M Nauck G Karakiulakis AP Perruchoud E Papakonstantinou M Roth 《Canadian Metallurgical Quarterly》1998,341(2-3):309-315
The vascular endothelial growth factor (VEGF) is a specific mitogen for vascular endothelial cells and enhances vascular permeability and edemagenesis. VEGF is also a major regulator of angiogenesis and may be a key target for inhibiting angiogenesis in angiogenesis-associated diseases. Among the extensively studied angiostatic compounds are several corticosteroids when used alone or in combination with heparin. In this study we present evidence for an additional mechanism of action of hydrocortisone, cortisone and dexamethasone in inhibiting edemagenesis or angiogenesis. In cultures of aortic human vascular smooth muscle cells these corticosteroids (1 x 10(-8) to 1 x 10(-12) M) abolished the platelet-derived growth factor-induced (PDGF) expression of the VEGF gene in a dose-dependent manner. In contrast, two precursors of corticosteroids, desoxycorticosterone or pregnenolone, did not affect PDGF-induced VEGF expression. Our findings indicate that the capacity of corticosteroids to reduce edema or to prevent new blood vessel formation may be attributed, at least in part to the ability of these agents to abolish the expression of VEGF. 相似文献
9.
N Ito C Wernstedt U Engstr?m L Claesson-Welsh 《Canadian Metallurgical Quarterly》1998,273(36):23410-23418
Receptor tyrosine phosphorylation is crucial for signal transduction by creating high affinity binding sites for Src homology 2 domain-containing molecules. By expressing the intracellular domain of Flt-1/vascular endothelial growth factor receptor-1 in the baculosystem, we identified two major tyrosine phosphorylation sites at Tyr-1213 and Tyr-1242 and two minor tyrosine phosphorylation sites at Tyr-1327 and Tyr-1333 in this receptor. This pattern of phosphorylation of Flt-1 was also detected in vascular endothelial growth factor-stimulated cells expressing intact Flt-1. In vitro protein binding studies using synthetic peptides and immunoblotting showed that phospholipase C-gamma binds to both Y(p)1213 and Y(p)1333, whereas Grb2 and SH2-containing tyrosine protein phosphatase (SHP-2) bind to Y(p)1213, and Nck and Crk bind to Y(p)1333 in a phosphotyrosine-dependent manner. In addition, unidentified proteins with molecular masses around 74 and 27 kDa bound to Y(p)1213 and another of 75 kDa bound to Y(p)1333 in a phosphotyrosine-dependent manner. SHP-2, phospholipase C-gamma, and Grb2 could also be shown to bind to the intact Flt-1 intracellular domain. These results indicate that a spectrum of already known as well as novel phosphotyrosine-binding molecules are involved in signal transduction by Flt-1. 相似文献
10.
11.
V Joukov V Kumar T Sorsa E Arighi H Weich O Saksela K Alitalo 《Canadian Metallurgical Quarterly》1998,273(12):6599-6602
The vascular endothelial growth factor (VEGF) and the VEGF-C promote growth of blood vessels and lymphatic vessels, respectively. VEGF activates the endothelial VEGF receptors (VEGFR) 1 and 2, and VEGF-C activates VEGFR-3 and VEGFR-2. Both VEGF and VEGF-C are also potent vascular permeability factors. Here we have analyzed the receptor binding and activating properties of several cysteine mutants of VEGF-C including those (Cys156 and Cys165), which in other platelet-derived growth factor/VEGF family members mediate interchain disulfide bonding. Surprisingly, we found that the recombinant mature VEGF-C in which Cys156 was replaced by a Ser residue is a selective agonist of VEGFR-3. This mutant, designated DeltaNDeltaC156S, binds and activates VEGFR-3 but neither binds VEGFR-2 nor activates its autophosphorylation or downstream signaling to the ERK/MAPK pathway. Unlike VEGF-C, DeltaNDeltaC156S neither induces vascular permeability in vivo nor stimulates migration of bovine capillary endothelial cells in culture. These data point out the critical role of VEGFR-2-mediated signal transduction for the vascular permeability activity of VEGF-C and strongly suggest that the redundant biological effects of VEGF and VEGF-C depend on binding and activation of VEGFR-2. The DeltaNDeltaC156S mutant may provide a valuable tool for the analysis of VEGF-C effects mediated selectively via VEGFR-3. The ability of DeltaNDeltaC156S to form homodimers also emphasizes differences in the structural requirements for VEGF and VEGF-C dimerization. 相似文献
12.
13.
目的 研究青蒿琥酯对急性单核细胞白血病SHI-1细胞株血管内皮生长因子(VEGF)及其受体( VEGFR)的影响。方法酶联免疫吸附法检测非细胞毒性浓度(5、10、20 ng/ml)青蒿琥酯作用SHI-1细胞后培养上清液VEGF浓度,流式细胞术检测有或无青蒿琥酯作用时,SHI-1细胞表面VEGFR-1及VEGFR-2阳性表达率。结果培养24、48 h后,无青蒿琥酯作用的SHI-1细胞培养上清液VEGF质量浓度分别为( 980.3±2.2)、(982.4±2.3) pg/ml,VEGFR-1表达率分别为(5.40±3.11)%和(4.45±2.85)%,VEGFR-2表达率分别为(13.90.± 2.26)%和(13.95±1.96)%。5、10、20 ng/ml青蒿琥酯作用24h后,SHI-1细胞培养上清液VEGF质量浓度分别为(234.6±1.8)、(114.9±1.6)、(108.8±1.5) pg/ml,作用48 h后分别为(62.3±1.7)、(60.9±1.6)、(32.7±1.7) pg/ml,与培养相同时间无青蒿琥酯组相比,VEGF浓度明显下降(均P< 0.05),且相同浓度青蒿琥酯作用24 h与48 h间差异亦有统计学意义(均P< 0.05)。5、10、20 ng/ml青蒿琥酯作用24 h,VEGFR-1阳性率分别为(4.30±2.21)%、(4.20±1.37)%和(3.90±1.86)%,作用48 h后分别为(3.80±2.87)%、(3.60±1.73)%和(3.00±1.82)%,相同作用时间不同浓度青蒿琥酯组间及相同浓度作用不同时间组间VEGFR-1阳性率差异均无统计学意义(均P> 0.05);作用24h后,SHI-1细胞VEGFR-2阳性率分别为(4.40±1.15)%、(3.10±0.68)%和(1.10±0.72)%,作用48 h后分别为(3.00±1.68)%、(2.20±0.93)%和(0.60±0.92)%,3个不同浓度青蒿琥酯作用相同时间后VEGFR-2表达率降低(均P< 0.05),相同浓度作用24与48 h间差异均无统计学意义(均P> 0.05)。结论SHI-1细胞株高分泌VEGF,青蒿琥酯可下调VEGF分泌及VEGFR-2的表达,而对VEGFR-1表达的调节作用不显著。 相似文献
14.
J Contrino S Goralnick J Qi G Hair FR Rickles DL Kreutzer 《Canadian Metallurgical Quarterly》1997,96(2):605-613
BACKGROUND: For the present study, we hypothesized that fibrin is an inducer of tissue factor (TF) expression in vascular endothelial cells in vitro and in vivo. METHODS AND RESULTS: To test the in vitro aspect of this hypothesis, human umbilical vein endothelial cells (HUVECs) were cocultured with physiologically relevant concentrations of fibrin (0.03 to 1.0 mg fibrin/mL) for various times (0.5 to 24 hours), and TF expression was compared with that in unstimulated HUVECs (media control). Results demonstrated that fibrin induced a time- and dose-dependent increase in TF antigen expression, functional TF procoagulant activity, and TF mRNA in HUVECs. CONCLUSIONS: These studies demonstrate that fibrin can directly regulate TF expression in HUVECs in vitro. 相似文献
15.
Flt-1 tyrosine kinase, vascular endothelial growth factor (VEGF) receptor-1, binds VEGF and a new VEGF-related ligand, placenta growth factor, but KDR/Flk-1 (VEGF receptor-2) binds only VEGF. To characterize the functional regions in the Flt-1 extracellular domain such as the ligand binding region and the dimer formation of the receptor, we constructed a series of mutants of the Flt-1 extracellular domain as soluble forms in a baculovirus system. We found that a region carrying the N-terminal 1st to 3rd immunoglobulin (Ig)-like domains of Flt-1 binds both ligands with high affinity. However, for dimer formation of soluble Flt-1, a region further downstream in the Flt-1 extracellular domain was required. Mutant Flt-1 receptors expressed in COS cells confirmed the requirement of the 4th to 7th Ig region for the activation of Flt-1 tyrosine kinase. Soluble Flt-1 carrying the N-terminal 1st to 3rd Ig region suppressed VEGF-dependent endothelial proliferation in vitro to the same level as the larger forms of soluble Flt-1, suggesting that the binding of one soluble Flt-1 molecule to one subunit of the VEGF homodimer may be sufficient to block the VEGF activity. 相似文献
16.
P Vuorela E Hatva A Lymboussaki A Kaipainen V Joukov MG Persico K Alitalo E Halmesm?ki 《Canadian Metallurgical Quarterly》1997,56(2):489-494
Normal development and function of the placenta requires invasion of the maternal decidua by trophoblasts, followed by abundant and organized vascular growth. Little is known of the significance and function of the vascular endothelial growth factor (VEGF) family, which includes VEGF, VEGF-B, and VEGF-C, and of placenta growth factor (PIGF) in these processes. In this study we have analyzed the expression of VEGF and PIGF mRNAs and their protein products in placental tissue obtained from noncomplicated pregnancies. Expression of VEGF and PIGF mRNA was observed by in situ hybridization in the chorionic mesenchyme and villous trophoblasts, respectively. Immunostaining localized the VEGF and PIGF proteins in the vascular endothelium, which was defined by staining for von Willebrand factor and for the Tie receptor tyrosine kinase, an early endothelial cell marker. VEGF-B and VEGF-C mRNAs were strongly expressed in human placenta as evidenced by Northern blot analysis. These data imply that VEGF and PIGF are produced by different cells but that both target the endothelial cells of normal human term placenta. 相似文献
17.
PURPOSE: Integrins alphavbeta3 and alphavbeta5 are cell-to-matrix adhesion molecules that have been reported to mediate vascular cell proliferation and migration. The authors investigated the regulation of expression of these angiogenic integrins by hypoxia and vascular endothelial growth factor (VEGF) in retinal microvascular endothelial cells in culture. METHODS: Cultured bovine retinal capillary endothelial cells were exposed to human recombinant VEGF under normoxic (95% air, 5% CO2) conditions to assess the effects of VEGF. Hypoxia studies were performed under lower oxygen concentration (0.5%-1.5% O2) induced by nitrogen replacement in constant 5% CO2 conditions. Integrin family mRNA and protein expression were assessed by northern blot analysis and immunoprecipitation. RESULTS: VEGF (25 ng/ml) increased integrin alphav, beta3, and 35 mRNA after 24 hours 6.1+/-0.8-fold (P < 0.001), 5.9+/-1.1-fold (P < 0.001), and 1.9+/-0.2-fold (P < 0.01), respectively. Similarly, hypoxia stimulated gene expression of integrin alphav and beta3 after 24 hours by 5.1+/-1.7-fold (P < 0.01) and 3.0+/-0.5-fold (P < 0.01), respectively, and integrin beta5 after 9 hours 1.4+/-0.2-fold (P < 0.05). This hypoxia-induced, integrin alphav mRNA elevation was inhibited significantly by anti-VEGF neutralizing antibody. Also, a conditioned medium from confluent endothelial cells maintained under hypoxic conditions for 24 hours produced a 7.1+/-1.1-fold increase (P < 0.001) in integrin alphav mRNA expression after 24 hours, which was reversed by anti-VEGF neutralizing antibody. Induction of integrin alphav by VEGF and hypoxia was confirmed in the protein level. CONCLUSIONS: These data suggest that hypoxia stimulates expression of vascular integrins alphavbeta3 and alphavbeta5 in retinal microvascular endothelial cells partially through autocrine-paracrine action of VEGF induced by the hypoxic state. 相似文献
18.
19.
DS Wang K Yamazaki K Nohtomi K Shizume K Ohsumi M Shibuya H Demura K Sato 《Canadian Metallurgical Quarterly》1996,11(4):472-479
Vascular endothelial growth factor (VEGF), a secreted endothelial cell-specific mitogen, is produced in endocrine organs and regulated by trophic hormones. Because angiogenesis and osteogenesis are closely regulated, we studied whether human osteoblast-like cells produce VEGF, and if so, what factors regulate VEGF mRNA expression. Human osteoblast-like cells (HObLC) derived from trabecular bone explants were cultured in alpha-MEM supplemented with 10% fetal calf serum. Northern blot analysis revealed that HObLC expressed VEGF mRNA, as did several human osteosarcoma cells. 1,25-(OH)2D3 increased the steady-state levels of VEGF mRNA in a time- and concentration-dependent manner in HObLC and one of the osteosarcoma cell lines, SaOS-2, accompanied by an increase in the concentration of immunoreactive VEGF in the conditioned medium. PTH and IGF-I also increased the level of VEGF mRNA in HObLC and SaOS-2 cells. Furthermore, 12-O-tetradecanoylphorbol ester stimulated VEGF mRNA in a time-and concentration-dependent manner. The VEGF mRNA expression induced by 1,25-(OH)2D3 was completely inhibited by H-7, but only partially by staurosporine. We have demonstrated that PTH, IGF-I, and most potently 1,25-(OH)2D3 stimulate the mRNA expression and secretion of VEGF in human osteoblast-like cells, suggesting that one of the anabolic effects of 1,25-(OH)2D3 on skeletal tissue may be mediated by VEGF produced by osteoblasts. 相似文献
20.
In acute and chronic inflammatory processes, fibrin deposition, and leukocyte accumulation are classic histopathologic hallmarks. Previous studies have shown that fibrin and fibrin degradation products can have biologic effects on vascular endothelial cells and can induce the expression of several endothelial cell-derived factors that may be important in regulating inflammation and tissue repair. We now demonstrate that coculture of human vascular endothelial cells (EC) with fibrin results in the up-regulation of intercellular adhesion molecule-1 (ICAM-1), thus providing a first link between fibrin deposition and adhesion molecule expression, which may lead subsequently to leukocyte accumulation and extravasation. Increased ICAM-1 expression was demonstrated by ELISA, flow cytometry, and functional adhesion assays. EC ICAM-1 expression increased in a time and dose response fashion. Cell surface levels of ICAM-1 induced by fibrin were comparable to, or exceeded, levels induced by IL-1beta. ICAM-1 expression increased beginning at 4 h post-fibrin formation with sustained elevated expression at 48 h. Fibrin-stimulated EC also bound increased numbers of polymorphonuclear neutrophils in cellular adhesion assays. This increase in adhesion could be blocked by Ab to ICAM-1. Inhibition of fibrin polymerization also inhibited the up-regulation of ICAM-1. Culture medium from fibrin-stimulated EC contained elevated levels of soluble ICAM-1. These data suggest that fibrin deposition on vascular EC, in addition to other reported effects on EC metabolism, may also lead to leukocyte accumulation and extravasation through the induction of leukocyte adhesion molecules such as ICAM-1. 相似文献