首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An enzyme catalysing the essential dephosphorylation of the riboflavin precursor, 5‐amino‐6‐ribitylamino‐2,4(1H,3H)‐pyrimidinedione 5′‐phosphate ( 6 ), was purified about 800‐fold from a riboflavin‐producing Bacillus subtilis strain, and was assigned as the translation product of the ycsE gene by mass spectrometry. YcsE is a member of the large haloacid dehalogenase (HAD) superfamily. The recombinant protein was expressed in Escherichia coli. It catalyses the hydrolysis of 6 (vmax, 12 μmol mg?1 min?1; KM, 54 μm ) and of FMN (vmax, 25 μmol mg?1 min?1; KM, 135 μm ). A ycsE deletion mutant of B. subtilis was not riboflavin dependent. Two additional proteins (YwtE, YitU) that catalyse the hydrolysis of 6 at appreciable rates were identified by screening 13 putative HAD superfamily members from B. subtilis. The evolutionary processes that have resulted in the handling of an essential step in the biosynthesis of an essential cofactor by a consortium of promiscuous enzymes require further analysis.  相似文献   

2.
Both fluorescent and luminescent observation are widely used to examine real-time gene expression patterns in living organisms. Several fluuorescent and luminescent proteins with specific optical properties have been developed and applied for simultaneous, multi-color observation of more than two gene expression profiles. Compared to fluorescent proteins, however, the application of multi-color luminescent imaging in living organisms is still limited. In this study, we introduced two-color luciferases into the soil nematode C. elegans and performed simultaneous analysis of two gene expression profiles. Using a green-emitting luciferase Eluc (emerald luciferase) and red-emitting luciferase SLR (stable luciferase red), the expression patterns of two genes were simultaneously observed in single animals from embryonic to adult stages over its whole life span. In addition, dual gene activities were observed at the single embryo level, with the simultaneous observation of morphological changes. These are the first application of a two-color luciferase system into a whole animal and suggest that precise relationship of expression patterns of multiple genes of interest can be analyzed over the whole life of the animal, dependent on the changes in genetic and/or environmental conditions.  相似文献   

3.
The application of probes for optical imaging is becoming popular as they have high safety and good biocompatibility. We prepared two kinds of glycosyl‐modified diporphyrins, and their potentials as fluorescent probes were tested for the first time. After preparation of the glycosyl‐modified porphyrin monomers, Ag‐promoted coupling of the monomers was used to obtain glucose‐modified porphyrin dimer (GPD) and lactose‐modified porphyrin dimer (LPD). The strong interaction between the two porphyrin rings achieves red‐shifted emission, and thus circumvents autofluorescence and light‐scattering in biological samples. Although the glycosylation improves solubility, it also yielded selective attachment to cell membranes, and to chorions of early developmental‐stage zebrafish. Patch‐clamp experiments revealed the biocompatibility and low toxicity of GPD and LPD. Moreover, an in vivo imaging experiment provided direct evidence that zebrafish chorion contains sugar‐binding proteins. The modification and derivatization make porphyrins potential bioimaging probes for specific optical imaging.  相似文献   

4.
5.
4‐Anilinoquinolines were identified as potent and narrow‐spectrum inhibitors of the cyclin G associated kinase (GAK), an important regulator of viral and bacterial entry into host cells. Optimization of the 4‐anilino group and the 6,7‐quinoline substituents produced GAK inhibitors with nanomolar activity, over 50 000‐fold selectivity relative to other members of the numb‐associated kinase (NAK) subfamily, and a compound (6,7‐dimethoxy‐N‐(3,4,5‐trimethoxyphenyl)quinolin‐4‐amine; 49 ) with a narrow‐spectrum kinome profile. These compounds may be useful tools to explore the therapeutic potential of GAK in prevention of a broad range of infectious and systemic diseases.  相似文献   

6.
7.
8.
Protein aggregation involves the assembly of partially misfolded proteins into oligomeric and higher-order structures that have been associated with several neurodegenerative diseases. However, numerous questions relating to protein aggregation remain unanswered due to the lack of available tools for visualization of these species in living cells. We recently developed a fluorogenic method named aggregation tag (AggTag), and presented the AggTag probe P1 , based on a Halo-tag ligand, to report on the aggregation of a protein of interest (POI) in live cells. However, the Halo-tag-based AggTag method only detects the aggregation of one specific POI at a time. In this study, we have expanded the AggTag method by using SNAP-tag technology to enable fluorogenic and biorthogonal detection of the aggregation of two different POIs simultaneously in live cells. A new AggTag probe— P2 , based on a SNAP-tag ligand bearing a green solvatochromic fluorophore—was synthesized for this purpose. Using confocal imaging and chemical crosslinking experiments, we confirmed that P2 can also report both on soluble oligomers and on insoluble aggregates of a POI fused with SNAP-tag in live cells. Ultimately, we showed that the orthogonal fluorescence of P1 and P2 allows for simultaneous visualization of two different pathogenic protein aggregates in the same cell.  相似文献   

9.
CRISPR-Cas allows us to introduce desired genome editing, including mutations, epitopes, and deletions, with unprecedented efficiency. The development of CRISPR-Cas has progressed to such an extent that it is now applicable in various fields, with the help of model organisms. C. elegans is one of the pioneering animals in which numerous CRISPR-Cas strategies have been rapidly established over the past decade. Ironically, the emergence of numerous methods makes the choice of the correct method difficult. Choosing an appropriate selection or screening approach is the first step in planning a genome modification. This report summarizes the key features and applications of CRISPR-Cas methods using C. elegans, illustrating key strategies. Our overview of significant advances in CRISPR-Cas will help readers understand the current advances in genome editing and navigate various methods of CRISPR-Cas genome editing.  相似文献   

10.
Infections caused by the hepatitis C virus (HCV) are a significant world health problem for which novel therapies are in urgent demand. The NS5B polymerase of HCV is responsible for the replication of viral RNA and has been a prime target in the search for novel treatment options. We had discovered allosteric finger‐loop inhibitors based on a thieno[3,2‐b]pyrrole scaffold as an alternative to the related indole inhibitors. Optimization of the thienopyrrole series led to several N‐acetamides with submicromolar potency in the cell‐based replicon assay, but they lacked oral bioavailability in rats. By linking the N4‐position to the ortho‐position of the C5‐aryl group, we were able to identify the tetracyclic thienopyrrole 40 , which displayed a favorable pharmacokinetic profile in rats and dogs and is equipotent with recently disclosed finger‐loop inhibitors based on an indole scaffold.  相似文献   

11.
We report the design and development of a fluorescent CdII ion complex that is capable of the ratiometric detection of H2S in living cells. This probe exploits the metal‐ion‐induced emission red shift resulting from direct contact between the aromatic ring of a fluorophore and a metal ion (i.e., arene–metal‐ion or “AM” contact). The CdII complex displays a large emission blue shift upon interaction with H2S as the CdII‐free ligand is released by the formation of cadmium sulfide. Screening of potential ligands and fluorophores led to the discovery of a pyronine‐type probe, 6? CdII, that generated a sensitive and rapid ratio value change upon interaction with H2S, without interference from the glutathione that is abundant in the cell. The membrane‐impermeable 6? CdII was successfully translocated into live cells by using an oligo‐arginine peptide and pyrenebutylate as carriers. As such, 6? CdII was successfully applied to the ratiometric detection of both exogenous and endogenous H2S produced by the enzymes in living cells, thus demonstrating the utility of 6? CdII in biological fluorescence analysis.  相似文献   

12.
Our research groups recently described a series of small‐molecule inducers of β‐cell proliferation that could be used to increase β‐cell mass. To mitigate the risk of nonspecific proliferation of other cell types, we devised a delivery strategy built on the tissue specificity observed in the experimental β‐cell imaging agent (+)‐dihydrotetrabenazine (DTBZ). The β‐cell proliferator agent aminopyrazine (AP) was covalently linked with (+)‐DTBZ to afford conjugates that retain both the proliferation activity and binding affinity for vesicular monoamine transporter‐2 (VMAT2). In vivo mouse tissue distribution studies of a prototypical AP–DTBZ conjugate showed 15‐fold pancreas exposure over plasma. Tissue‐to‐plasma ratios in liver and kidneys were two‐ and five‐fold, respectively. This work is the first demonstration of enhanced delivery of β‐cell‐proliferating molecules to the pancreas by leveraging the intrinsic tissue specificity of a β‐cell imaging agent.  相似文献   

13.
14.
β‐Glucoside‐configured cyclophellitols are activity‐based probes (ABPs) that allow sensitive detection of β‐glucosidases. Their applicability to detect proteins fused with β‐glucosidase was investigated in the cellular context. The tag was Rhodococcus sp. M‐777 endoglycoceramidase II (EGCaseII), based on its lack of glycans and ability to hydrolyze fluorogenic 4‐methylumbelliferyl β‐d ‐lactoside (an activity absent in mammalian cells). Specific dual detection of fusion proteins was possible in vitro and in situ by using fluorescent ABPs and a fluorogenic substrate. Pre‐blocking with conduritol β‐epoxide (a poor inhibitor of EGCaseII) eliminated ABP labeling of endogenous β‐glucosidases. ABPs equipped with biotin allowed convenient purification of the fusion proteins. Diversification of ABPs (distinct fluorophores, fluorogenic high‐resolution detection moieties) should assist further research in living cells and organisms.  相似文献   

15.
Herein, we describe selective imaging of hydrogen peroxide using a precipitating dye conjugated to a boronic acid‐based immolative linker. We achieved visualization of endogenous hydrogen peroxide in phagosomes by solid‐state two‐photon fluorescence imaging in living cells with exceptionally high spatial resolution.  相似文献   

16.
The synthesis and properties two series of new 2′‐O‐methyl RNA probes, each containing a single insertion of a 2′‐bispyrenylmethylphosphorodiamidate derivative of a nucleotide (U, C, A, and G), are described. As demonstrated by UV melting studies, the probes form stable complexes with model RNAs and DNAs. Significant increases (up to 21‐fold) in pyrene excimer fluorescence intensity were observed upon binding of most of the probes with complementary RNAs, but not with DNAs. The fluorescence spectra are independent of the nature of the modified nucleotides. The nucleotides on the 5′‐side of the modified nucleotide have no effect on the fluorescence spectra, whereas the natures of the two nucleotides on the 3′‐side are important: CC, CG, and UC dinucleotide units on the 3′‐side of the modified nucleotide provide the maximum increases in excimer fluorescence intensity. This study suggests that these 2′‐bispyrene‐labeled 2′‐O‐methyl RNA probes might be useful tools for detection of RNAs.  相似文献   

17.
18.
Benzene is a human carcinogen that might act through both genotoxic and nongenotoxic mechanisms to promote tumorigenesis. The genotoxic effects of benzene are well established, however, its potential nongenotoxic roles in carcinogenesis are poorly understood. We find that benzene suppresses somatic apoptosis in C. elegans; this suggests a potential nongenotoxic mechanism by which this chemical might promote tumorigenesis. We find that two other benzenoid chemicals, biphenyl and toluene, also inhibit apoptosis in C. elegans. Notably, these chemicals are suspected carcinogens in mammals; this suggests that a subclass of benzenoid chemicals might promote tumorigenesis by suppressing apoptosis. A benzene metabolite, 1,4-benzoquinone, can directly inhibit the activity of caspase-3; this suggests a general molecular mechanism by which benzenoid chemicals might suppress apoptosis. These findings suggest that C. elegans is an excellent alternative animal model for studying the antiapoptotic activity of tumor-promoting chemicals and for identifying in vivo targets of these chemicals.  相似文献   

19.
Hepatitis C virus (HCV) chronically affects millions of individuals worldwide. The HCV nonstructural protein 5A (NS5A) plays a critical role in the viral assembly pathway. Domain 3 (D3) of NS5A is an unstructured polypeptide responsible for the interaction with the core particle assembly structure. Casein kinase 2 (CK2) phosphorylates NS5A‐D3 at multiple sites that have mostly been predicted and only observed indirectly. In order to identify the CK2‐dependent phosphorylation sites, we monitored the reaction between NS5A‐D3 and CK2 in vitro by time‐resolved NMR. We unambiguously identified four serine residues as substrates of CK2. The apparent rate constant for each site was determined from the reaction curves. Ser408 was quickly phosphorylated, whereas the three other serine residues reacted more slowly. These results provide a starting point from which to elucidate the role of phosphorylation in the mechanisms of viral assembly—and in the modulation of the viral activity—at the molecular level.  相似文献   

20.
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease in the world. However, there is no effective drug to cure it. Caesalmin C is a cassane-type diterpenoid abundant in Caesalpinia bonduc (Linn.) Roxb. In this study, we investigated the effect of caesalmin C on Aβ-induced toxicity and possible mechanisms in the transgenic Caenorhabditis elegans AD model. Our results showed that caesalmin C significantly alleviated the Aβ-induced paralysis phenotype in transgenic CL4176 strain C. elegans. Caesalmin C dramatically reduced the content of Aβ monomers, oligomers, and deposited spots in AD C. elegans. In addition, mRNA levels of sod-3, gst-4, and rpt-3 were up-regulated, and mRNA levels of ace-1 were down-regulated in nematodes treated with caesalmin C. The results of the RNAi assay showed that the inhibitory effect of caesalmin C on the nematode paralysis phenotype required the DAF-16 signaling pathway, but not SKN-1 and HSF-1. Further evidence suggested that caesalmin C may also have the effect of inhibiting acetylcholinesterase (AchE) and upregulating proteasome activity. These findings suggest that caesalmin C delays the progression of AD in C. elegans via the DAF-16 signaling pathway and that it could be developed into a promising medication to treat AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号