首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, the versatility of N‐methylpyrrole (Py)‐N‐methylimidazole (Im) polyamide conjugates, which have been developed from the DNA‐binding antibiotics distamycin A and netropsin, has been shown. These synthetic small molecules can permeate cells to bind with duplex DNA in a sequence‐specific manner, and hence can influence gene expression in vivo. Accordingly, several reports demonstrating the sequence specificity and biological activity of Py‐Im polyamides have accumulated. However, the benefits of Py‐Im polyamides, in particular those conjugated with fluorophores, has been overlooked. Moreover, clear directions for the employment of these attractive artificial small molecules have not yet been shown. Here, we present a detailed overview of the current and prospective applications of Py‐Im polyamide–fluorophore conjugates, including sequence‐specific recognition with fluorescence emission properties, and their potential roles in biological imaging.  相似文献   

2.
Antisense oligodeoxynucleotides (ODNs) are short synthetic DNA polymers complementary to a target RNA sequence. They are commonly designed to halt a biological event, such as translation or splicing. ODNs are potentially useful therapeutic agents for the treatment of different human diseases. Carbohydrate–ODN conjugates have been reported to improve the cell‐specific delivery of ODNs through receptor mediated endocytosis. We tested the anti‐HIV activity and biochemical properties of the 5′‐end glucose‐conjugated GEM 91 ODN targeting the initiation codon of the gag gene of HIV‐1 RNA in cell‐based assays. The conjugation of a glucose residue significantly reduces the immunostimulatory effect without diminishing its potent anti‐HIV‐1 activity. No significant effects were observed in either ODN stability in serum, in vitro degradation of antisense DNA–RNA hybrids by RNase H, cell toxicity, cellular uptake and ability to interfere with genomic HIV‐1 dimerisation.  相似文献   

3.
In the presence of Na2CO3 (1S,3S)‐ and (1R,3S)‐1‐(2,2‐dimethoxyethyl)‐2‐(1,3‐dioxobutyl)‐3‐(1,3‐dioxo‐butyl)oxymethyl‐1,2,3,4‐tetrahydrocarboline ( 1 ) were transformed into (1S,3S)‐ and (1R,3S)‐1‐(2,2‐dimethoxyethyl)‐2‐(1,3‐dioxobutyl)‐3‐hydroxymethyl‐1,2,3,4‐tetrahydrocarboline ( 2 ), which were cyclized to (6S)‐3‐acetyl‐6‐hydroxymethyl‐4,6,7,12‐tetrahydro‐4‐oxoindolo[2,3‐a]quinolizine ( 4 ), via(6S,12bS)‐ and (6S,12bR)‐3‐acetyl‐2‐hydroxyl‐6‐hydroxymethyl‐1,2,3,4,6,7,12,12b‐octahydro‐4‐oxoindolo[2,3‐a]quinoline ( 3 ). (6S)‐ 4 was coupled with Boc‐Gly, Boc‐L‐Asp(β‐benzyl ester), or Boc‐L‐Gln to give 6‐amino acid substituted (6S)‐3‐acetyl‐4,6,7,12‐tetrahydro‐4‐oxoindolo[2,3‐a]quinolizines 5a , 5b , or 5c , respectively. After the removal of Boc from (6S)‐ 5a (6S)‐3‐acetyl‐6‐glycyl‐4,6,7,12‐tetrahydro‐4‐oxoindolo[2,3‐a]quinolizine ( 6 ) was obtained. The anticancer activities of (6S)‐ 5 and (6S)‐ 6 in vitro were tested.  相似文献   

4.
To further explore the basic structural motifs (3S,6S)‐6‐benzhydryl‐N‐benzyltetrahydro‐2H‐pyran‐3‐amine and (2S,4R,5R)‐2‐benzhydryl‐5‐(benzylamino)tetrahydro‐2H‐pyran‐4‐ol, developed by our research group, for monoamine transport inhibition, we designed and synthesized various structurally altered analogues. The new compounds were tested for their affinities for the dopamine transporter (DAT), the serotonin transporter (SERT), and the norepinephrine transporter (NET) in rat brain by measuring their capacity to inhibit the uptake of [3H]DA, [3H]5‐HT, and [3H]NE, respectively. Our results point to novel compounds with a TUI, DNRI, SNRI, or SSRI profile. Among the TUIs, compound 2 g exhibited a balanced potency for all three monoamine transporters (Ki: 60, 79, and 70.3 nM for DAT, SERT, and NET, respectively). In the rat forced swim test, compound 2 g produced a significant decrease in immobility in drug‐treated rats relative to vehicle, indicating a potential antidepressant property.  相似文献   

5.
In chromatin, 5‐methylcytosine (mC), which represents the fifth nucleobase in genomic DNA, plays a role as an inducer of epigenetic changes. Tumor cells exhibit aberrant DNA methylation patterns, and inhibition of human DNA cytosine‐5 methyltransferase (DNMT), which is responsible for generating mC in CpG sequences, is an effective strategy to treat various cancers. Here, we describe the design, synthesis, and evaluation of the properties of 2‐amino‐4‐halopyridine‐C‐nucleosides (dXP) and oligodeoxyribonucleotides (ODNs) containing dXP as a novel mechanism‐based inhibitor of DNMTs. The designed ODN containing XPpG forms a complex with DNMTs by covalent bonding through a nucleophilic aromatic substitution (SNAr) reaction, and its cell proliferation activity is investigated. This study suggests that dXP in a CpG sequence of DNA could serve as a potential nucleic acid drug lead in cancer chemotherapy and a useful chemical probe for studies of epigenetics. Our molecular design using a SNAr reaction would be useful for DNMTs and other protein–DNA interactions.  相似文献   

6.
The synthesis of immobilized β‐cyclodextrin derivatives onto polyamide‐6 fabric is presented. These novel fabrics were prepared by graft‐copolymerization of glycidyl methacrylate (GMA) onto polyamide 6 fabric, using a chemical redox system K2S2O8/CuSO4·5H2O, followed by reaction of β‐cyclodextrins (CD) or monochlorotriazinyl (MCT β‐CD) with the GMA epoxy group. Some biocidal guests were complexed into CD cavity including p‐hydroxy benzoic acid, AgNO3–ethanolamine mixture, iodine, N,N‐diethyltoluamide (DETA), citronella, jasmine, and sweet basil. Characterization of the novel fabrics was done by Fourier transform infrared spectroscopy (IR), electron scanning microscopy (SEM), and thermo gravimetric analysis (TGA). The biocidal activity of the grafted fabrics was tested against five strains of microorganisms. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 2586–2593, 2006  相似文献   

7.
A series of sugar‐modified derivatives of cytostatic 7‐heteroaryl‐7‐deazaadenosines (2′‐deoxy‐2′‐fluororibo‐ and 2′‐deoxy‐2′,2′‐difluororibonucleosides) bearing an aryl or heteroaryl group at position 7 was prepared and screened for biological activity. The difluororibonucleosides were prepared by non‐ stereoselective glycosidation of 6‐chloro‐7‐deazapurine with benzoyl‐protected 2‐deoxy‐2,2‐difluoro‐D ‐erythro‐pentofuranosyl‐1‐mesylate, followed by amination and aqueous Suzuki cross‐couplings with (het)arylboronic acids. The fluororibo derivatives were prepared by aqueous palladium‐catalyzed cross‐coupling reactions of the corresponding 7‐iodo‐7‐deazaadenine 2′‐deoxy‐2′‐fluororibonucleoside 20 with (het)arylboronic acids. The key intermediate 20 was prepared by a six‐step sequence from the corresponding arabinonucleoside by selective protection of 3′‐ and 5′‐hydroxy groups with acid‐labile groups, followed by stereoselective SN2 fluorination and deprotection. Some of the title nucleosides and 7‐iodo‐7‐deazaadenine intermediates showed micromolar cytostatic or anti‐HCV activity. The most active were 7‐iodo and 7‐ethynyl derivatives. The corresponding 2′‐deoxy‐2′,2′‐difluororibonucleoside 5′‐O‐triphosphates were found to be good substrates for bacterial DNA polymerases, but are inhibitors of human polymerase α.  相似文献   

8.
The S‐selective hydroxynitrile lyase from Baliospermum montanum (BmHNL) has broad substrate specificity toward aromatic substrates as well as high temperature stability, although with low enantioselectivity and specific activity. To expand the industrial application of this enzyme, we improved its enantioselectivity and specific activity toward (S)‐mandelonitrile by mutagenesis. The specific activity of the BmHNL H103C/N156G mutant for (S)‐mandelonitrile production was raised to 154 U mg?1 (WT BmHNL: 52 U mg?1). The enantiomeric excess was increased to 93 % (WT BmHNL: 55 %). The kinetic analysis revealed Km for (R)‐mandelonitrile and kcat for (S)‐mandelonitrile increased by the mutation at Asn156, thus contributing to the increase in enantiomeric excess. This is the first report on an improvement in catalytic efficiency and enantiomeric excess of BmHNL for (S)‐mandelonitrile synthesis by random and site‐directed mutagenesis.  相似文献   

9.
The major challenge for proteasome inhibitor design lies in achieving high selectivity for, and activity against, the target, which requires specific interactions with the active site. Novel ligands aim to overcome off‐target‐related side effects such as peripheral neuropathy, which is frequently observed in cancer patients treated with the FDA‐approved proteasome inhibitors bortezomib ( 1 ) or carfilzomib ( 2 ). A systematic comparison of electrophilic headgroups recently identified the class of α‐keto amides as promising for next generation drug development. On the basis of crystallographic knowledge, we were able to develop a structure–activity relationship (SAR)‐based approach for rational ligand design using an electronic parameter (Hammett’s σ) and in silico molecular modeling. This resulted in the tripeptidic α‐keto phenylamide BSc4999 [(S)‐3‐(benzyloxycarbonyl‐(S)‐leucyl‐(S)‐leucylamino)‐5‐methyl‐2‐oxo‐N‐(2,4‐dimethylphenyl)hexanamide, 6 a ], a highly potent (IC50=38 nM ), cell‐permeable, and slowly reversible covalent inhibitor which targets both the primed and non‐primed sites of the proteasome’s substrate binding channel as a special criterion for selectivity. The improved inhibition potency and selectivity of this new α‐keto phenylamide makes it a promising candidate for targeting a wider range of tumor subtypes than commercially available proteasome inhibitors and presents a new candidate for future studies.  相似文献   

10.
Genipin is a Chinese herbal medicine with both neuroprotective and neuritogenic activity. Because of its unstable nature, efforts have been to develop more stable genipin derivatives with improved biological activities. Among the new compounds reported in the literature, (1R)‐isopropyloxygenipin (IPRG001) is a more stable but less active compound compared with the parent, genipin. Here, two new IPRG001 derivatives generated by stereoselective reduction of the C6=C7 double bond were synthesized. The 1R and 1S isomers of (4aS,7S,7aS)‐methyl‐7‐(hydroxymethyl)‐1‐isopropoxy‐1,4a,5,6,7,7a‐hexahydrocyclopenta[c]pyran‐4‐carboxylate ( CHR20 and CHR21 ) were shown to be very stable both in high‐glucose cell culture medium and in mice serum at 37 °C. Evaluation using an MTT assay and Hoechst staining showed that CHR20 and CHR21 promote the survival of rat adrenal pheochromocytoma (PC12) and retinal neuronal (RGC‐5) cells from injury induced by sodium nitroprusside (SNP). The neuroprotective effects of CHR20 and CHR21 were greater than both isomers of IPRG001, the parent compounds. These results indicate that reduction of 1‐O‐isopropyloxygenipin enhances its neuroprotective activity without affecting its stability.  相似文献   

11.
A search for the large‐scale preparation of (5S)‐5,6‐(isopropylidenedioxy)‐3‐oxohexanoates ( 2 ) – a key intermediate in the synthesis of pharmacologially important statins – starting from (S)‐malic acid is described. The synthesis of the required initial compound methyl (3S)‐3,4‐(isopropylidenedioxy)butanoate ( 1 ) by Moriwake’s reduction of dimethyl (S)‐malate ( 3 ) has been improved. Direct 2‐C chain elongation of ester 1 using the lithium enolate of tert‐butyl acetate has been shown to be successful at a 3‐ to 5‐fold excess of the enolate. Unfortunately, the product, tert‐butyl (5S)‐5,6‐(isopropylidenedioxy)‐3‐oxohexanoate ( 2a ) is unstable during distillation. Ethyl (5S)‐5,6‐(isopropylidenedioxy)‐3‐oxohexanoate ( 2b ) was prepared alternatively on a multigram scale from (3S)‐3,4‐(isopropylidenedioxy)butanoic acid ( 7 ) by activation with N,N′‐carbonyldiimidazole and subsequent reaction with Mg(OOCCH2COOEt)2. A convenient pathway for the in situ preparation of the latter is also described. Ethyl ester ( 2b ) can be advantageously purified by distillation. The stereochemistry of the catalytic hydrogenation of β‐keto ester ( 2b ) to ethyl (5S)‐5,6‐(isopropylidenedioxy)‐3‐hydrohyhexanoate (syn‐ 6 and anti‐ 6 ) has been studied using a number of homogeneous achiral and chiral Rh(I) and Ru(II) complexes with phosphine ligands. A comparison of Rh(I) and Ru(II) catalysts with (S)‐ and (R)‐BINAP as chiral ligands revealed opposite activity in dependence on the polarity of the solvent. No influence of the chiral backbone of substrate 2b on the enantioselectivity was noted. A ratio of syn‐ 6 /anti‐ 6 =2.3 was observed with an achiral (Ph3P)3RuCl2 catalyst. Ru[(R)‐Tol‐BINAP]Cl2 neutralized with one equivalent of AcONa afforded the most efficient catalytic system for the production of optically pure syn‐(5S)‐5,6‐isopropylidenedioxy‐3‐hydroxyhexanoate (syn‐ 6 ) at a preparative substrate/catalyst ratio of 1000:1.  相似文献   

12.
(2′S)‐2′‐Deoxy‐2′‐C‐methyluridine and (2′R)‐2′‐deoxy‐2′‐C‐methyluridine were incorporated in the 3′‐overhang region of the sense and antisense strands and in positions 2 and 5 of the seed region of siRNA duplexes directed against Renilla luciferase, whereas (2′S)‐2′‐deoxy‐2′‐C‐methylcytidine was incorporated in the 6‐position of the seed region of the same constructions. A dual luciferase reporter assay in transfected HeLa cells was used as a model system to measure the IC50 values of 24 different modified duplexes. The best results were obtained by the substitution of one thymidine unit in the antisense 3′‐overhang region by (2′S)‐ or (2′R)‐2′‐deoxy‐2′‐C‐methyluridine, reducing IC50 to half of the value observed for the natural control. The selectivity of the modified siRNA was measured, it being found that modifications in positions 5 and 6 of the seed region had a positive effect on the ON/OFF activity.  相似文献   

13.
(R)‐4‐Hydroxymethyl‐2‐phenyl‐2‐oxazoline (R)‐ 1 ) was prepared from (L)‐serine. The respective tosylate ((S)‐ 2 ) was converted into sulfides (S)‐ 4 and (S)‐ 5 , and sulfone (S)‐ 6 , useful starting materials for the elaboration of additional chiral centers. A previously reported [ α]D 25 value for (R)‐ 4 is corrected.  相似文献   

14.
Methyl (1S,3S and 1R,3S)‐1‐(2, 2‐dimethoxyethyl)‐1,2,3,4‐tetrahydrocarboline‐3‐carboxylate ( 3 ) was hydrolyzed in the presence of sodium hydroxide to give (1S,3S and 1R,3S)‐1‐(2,2‐dimethoxyethyl)‐1,2,3,4‐tetrahydrocarboline‐3‐carboxylic acid ( 4 ), which was reduced with LiAlH4 to provide (1S,3S)‐ and (1R,3S)‐1‐(2,2‐dimethoxyethyl)‐3‐hydroxymethyl‐1,2,3,4‐tetrahydrocarbolines ( 10 ), and then amidated in ammonia containing methanol to obtain (1S,3S)‐ and (1R,3S)‐1‐(2,2‐dimethoxyethyl)‐1,2,3,4‐tetrahydrocarboline‐3‐carboxamide ( 14 ). Acylation of (1S,3S and 1R,3S)‐ 3 , (1S,3S and 1R,3S)‐ 4 , (1S,3S)‐ 10 , (1R, 3S)‐ 10 , (1S, 3S)‐ 14 and (1R,3S)‐ 14 afforded the corresponding methyl (1S,3S and 1R,3S)‐1‐(2,2‐dimethoxyethyl)‐ 2‐(1,3‐dioxobutyl)‐1,2,3,4‐tetrahydrocarbolines‐3‐carboxylate ( 6 ), (1S,3S and 1R,3S)‐1‐(2,2‐dimethoxyethyl)‐2‐(1,3‐dioxobutyl)‐1,2,3,4‐tetrahydrocarboline‐3‐carboxylic acid ( 5 ), (1S,3S)‐ and (1R,3S)‐1‐(2,2‐dimethoxyethyl)‐2‐(1,3‐dioxobutyl)‐3‐(1,3‐dioxobutyl)oxymethyl‐1,2,3,4‐tetrahydrocarboline ( 11 ), (1S,3S)‐ and (1R,3S)‐1‐(2,2‐dimethoxyethyl)‐2‐(1,3‐dioxobutyl)‐1,2,3,4‐tetrahydrocarboline‐3‐carboxamide ( 15 ), respectively. After Aldol reaction, dehydration and dehydrogenation the desired (6S)‐6‐substituted 4,6,7,12‐tetrahydro‐4‐oxoindolo[2,3‐a]quinolizines 8 , 9 , 12 , 13 , and 16 were obtained. Their anticancer activities in vitro were investigated.  相似文献   

15.
The design and synthesis of new N1‐substituted 3‐carboxy‐ and 3‐phosphonopyrazoline and pyrazole amino acids that target the glutamate binding site of NMDA receptors are described. An analysis of the stereochemical requirements for high‐affinity interaction with these receptors was performed. We identified two highly potent and selective competitive NMDA receptor antagonists, (5SR)‐ 1 and (5SR)‐ 4 , which exhibit good in vitro neuroprotective activity and in vivo anticonvulsant activity by i.p. administration, suggesting that these molecules may have potential use as therapeutic agents.  相似文献   

16.
Expansion of GAA triplet repeats in intron 1 of the FXN gene reduces frataxin expression and causes Friedreich's ataxia. (GAA)n repeats form non‐B‐DNA structures, including triple helix H‐DNA and higher‐order structures (sticky DNA). In the proposed mechanisms of frataxin gene silencing, central unanswered questions involve the characterization of non‐B‐DNA structure(s) that are strongly suggested to play a role in frataxin expression. Here we examined (GAA)n binding by triplex‐stabilizing benzoquinoquinoxaline (BQQ) and the corresponding triplex‐DNA‐cleaving BQQ‐1,10‐phenanthroline (BQQ‐OP) compounds. We also examined the ability of these compounds to act as structural probes for H‐DNA formation within higher‐order structures at pathological frataxin sequences in plasmids. DNA‐complex‐formation analyses with a gel‐mobility‐shift assay and sequence‐specific probing of H‐DNA‐forming (GAA)n sequences by single‐strand oligonucleotides and triplex‐directed cleavage demonstrated that a parallel pyrimidine (rather than purine) triplex is the more stable motif formed at (GAA)n repeats under physiologically relevant conditions.  相似文献   

17.
C2‐Symmetrical, enantiopure 2,6‐di[1‐(1‐aziridinyl)alkyl]pyridines (DIAZAPs) were prepared by a high‐yielding, three‐step sequence starting from 2,6‐pyridinedicarbaldehyde and (S)‐valinol or (S)‐phenylglycinol. The new compounds were tested as ligands in palladium‐catalyzed allylation of carbanions in different solvents. Almost quantitative yield and up to 99 % enantiomeric excess were obtained in the reactions of the enolates derived from malonate, phenyl‐ and benzylmalonate dimethyl esters with 1,3‐diphenyl‐2‐propenyl ethyl carbonate.  相似文献   

18.
The cationic porphyrin 5,10,15,20‐tetrakis (diisopropyl‐guanidine)‐21H,23H‐porphine (DIGPor) selectively binds to DNA containing O6‐methylguanine (O6‐MeG) and inhibits the DNA repair enzyme O6‐methylguanine‐DNA methyltransferase (MGMT). The O6‐MeG selectivity and MGMT inhibitory activity of DIGPor were improved by incorporating ZnII into the porphyrin. The resulting metal complex (Zn‐DIGPor) potentiated the activity of the DNA‐alkylating drug temozolomide in an MGMT‐expressing cell line. To the best of our knowledge, this is the first example of DNA‐targeted MGMT inhibition.  相似文献   

19.
3‐Methylaspartate ammonia‐lyase (MAL) catalyzes the reversible amination of mesaconate to give both (2S,3S)‐3‐methylaspartic acid and (2S,3R)‐3‐methylaspartic acid as products. The deamination mechanism of MAL is likely to involve general base catalysis, in which a catalytic base abstracts the C3 proton of the respective stereoisomer to generate an enolate anion intermediate that is stabilized by coordination to the essential active‐site MgII ion. The crystal structure of MAL in complex with (2S,3S)‐3‐methylaspartic acid suggests that Lys331 is the only candidate in the vicinity that can function as a general base catalyst. The structure of the complex further suggests that two other residues, His194 and Gln329, are responsible for binding the C4 carboxylate group of (2S,3S)‐3‐methylaspartic acid, and hence are likely candidates to assist the MgII ion in stabilizing the enolate anion intermediate. In this study, the importance of Lys331, His194, and Gln329 for the activity and stereoselectivity of MAL was investigated by site‐directed mutagenesis. His194 and Gln329 were replaced with either an alanine or arginine, whereas Lys331 was mutated to a glycine, alanine, glutamine, arginine, or histidine. The properties of the mutant proteins were investigated by circular dichroism (CD) spectroscopy, kinetic analysis, and 1H NMR spectroscopy. The CD spectra of all mutants were comparable to that of wild‐type MAL, and this indicates that these mutations did not result in any major conformational changes. Kinetic studies demonstrated that the mutations have a profound effect on the values of kcat and kcat/KM; this implicates Lys331, His194 and Gln329 as mechanistically important. The 1H NMR spectra of the amination and deamination reactions catalyzed by the mutant enzymes K331A, H194A, and Q329A showed that these mutants have strongly enhanced diastereoselectivities. In the amination direction, they catalyze the conversion of mesaconate to yield only (2S,3S)‐3‐methylaspartic acid, with no detectable formation of (2S,3R)‐3‐methylaspartic acid. The results are discussed in terms of a mechanism in which Lys331, His194, and Gln329 are involved in positioning the substrate and in formation and stabilization of the enolate anion intermediate.  相似文献   

20.
The structure‐based design, synthesis, biological evaluation, and X‐ray structural studies of fluorine‐containing HIV‐1 protease inhibitors are described. The synthesis of both enantiomers of the gem‐difluoro‐bis‐THF ligands was carried out in a stereoselective manner using a Reformatskii–Claisen reaction as the key step. Optically active ligands were converted into protease inhibitors. Two of these inhibitors, (3R,3aS,6aS)‐4,4‐difluorohexahydrofuro[2,3‐b]furan‐3‐yl(2S,3R)‐3‐hydroxy‐4‐((N‐isobutyl‐4‐methoxyphenyl)sulfonamido)‐1‐phenylbutan‐2‐yl) carbamate ( 3 ) and (3R,3aS,6aS)‐4,4‐difluorohexahydrofuro[2,3‐b]furan‐3‐yl(2S,3R)‐3‐hydroxy‐4‐((N‐isobutyl‐4‐aminophenyl)sulfonamido)phenylbutan‐2‐yl) carbamate ( 4 ), exhibited HIV‐1 protease inhibitory Ki values in the picomolar range. Both 3 and 4 showed very potent antiviral activity, with respective EC50 values of 0.8 and 3.1 nM against the laboratory strain HIV‐1LAI. The two inhibitors exhibited better lipophilicity profiles than darunavir, and also showed much improved blood–brain barrier permeability in an in vitro model. A high‐resolution X‐ray structure of inhibitor 4 in complex with HIV‐1 protease was determined, revealing that the fluorinated ligand makes extensive interactions with the S2 subsite of HIV‐1 protease, including hydrogen bonding interactions with the protease backbone atoms. Moreover, both fluorine atoms on the bis‐THF ligand formed strong interactions with the flap Gly 48 carbonyl oxygen atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号