首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Galectins are a class of carbohydrate‐binding proteins named for their galactose‐binding preference and are involved in a host of processes ranging from homeostasis of organisms to immune responses. As a first step towards correlating the carbohydrate‐binding preferences of the different galectins with their biological functions, we determined carbohydrate recognition fine‐specificities of galectins with the aid of carbohydrate microarrays. A focused set of oligosaccharides considered relevant to galectins was prepared by chemical synthesis. Structure–activity relationships for galectin–sugar interactions were determined, and these helped in the establishment of redundant and specific galectin actions by comparison of binding preferences. Distinct glycosylations on the basic lactosyl motifs proved to be key to galectin binding regulation—and therefore galectin action—as either high‐affinity ligands are produced or binding is blocked. High‐affinity ligands such as the blood group antigens that presumably mediate particular functions were identified.  相似文献   

2.
A series of novel N‐substituted sophocarpinic acid derivatives was designed, synthesized, and evaluated for their anti‐enteroviral activities against coxsackievirus type B3 (CVB3) and coxsackievirus type B6 (CVB6) in Vero cells. Structure–activity relationship analysis revealed that the introduction of a benzenesulfonyl moiety on the 12‐nitrogen atom in (E)‐β,γ‐sophocarpinic acid might significantly enhance anti‐CVB3 activity. Among the derivatives, (E)‐12‐N‐(m‐cyanobenzenesulfonyl)‐β,γ‐sophocarpinic acid ( 11 m ), possessing a meta‐cyanobenzenesulfonyl group, exhibited potent activity against CVB3 with a selectivity index (SI) of 107. Furthermore, compound 11 m also showed a good oral pharmacokinetic profile, with an AUC value of 7.29 μM h?1 in rats, and good safety through the oral route in mice, with an LD50 value of >1000 mg kg?1; these values suggest a druggable characteristic. Therefore, compound 11 m was selected for further investigation as a promising CVB3 inhibitor. We consider (E)‐β,γ‐N‐(benzenesulfonyl)sophocarpinic acids to be a novel class of anti‐CVB3 agents.  相似文献   

3.
Protein–protein and protein–carbohydrate interactions as a means to target the cell surface for therapeutic applications have been extensively investigated. However, carbohydrate–carbohydrate interactions (CCIs) have largely been overlooked. Here, we investigate the concept of CCI‐mediated drug delivery. Lactose‐functionalized β‐cyclodextrin (L‐β‐CD) hosting doxorubicin (Dox) was evaluated for site‐specific delivery to cancer cells via interaction with GM3, a cell‐surface carbohydrate. The host–guest complex was evaluated in B16 melanoma cells, which express exceptionally high levels of GM3, and acute monocytic leukemia (THP‐1) and mouse fibroblast (NIH‐3T3) cells, which lack GM3 on the cell surface. Doxorubicin (Dox) was delivered more efficiently into B16 cells compared with NIH‐3T3 and THP‐1 cells. In B16 cells pretreated with sialidase or sodium periodate, thus preventing CCI formation, drug uptake was significantly decreased. Taken together, the results of these studies strongly support CCI‐mediated uptake via the GM3–lactose interaction as the mechanism of controlled drug delivery.  相似文献   

4.
α‐Galactosidase (αGal) is a lysosomal enzyme that hydrolyses the terminal α‐galactosyl moiety from glycosphingolipids. Mutations in the encoding genes for αGal lead to defective or misfolded enzyme, which results in substrate accumulation and subsequent organ dysfunction. The metabolic disease caused by a deficiency of human α‐galactosidase A is known as Fabry disease or Fabry–Anderson disease, and it belongs to a larger group known as lysosomal storage diseases. An effective treatment for Fabry disease has been developed by enzyme replacement therapy (ERT), which involves infusions of purified recombinant enzyme in order to increase enzyme levels and decrease the amounts of accumulated substrate. However, immunoreactivity and IgG antibody formation are major, therapy‐limiting, and eventually life‐threatening complications of ERT. The present study focused on the epitope determination of human α‐galactosidase A against its antibody formed. Here we report the identification of the epitope of human αGal(309–332) recognized by a human monoclonal anti‐αGal antibody, using a combination of proteolytic excision of the immobilized immune complex and surface plasmon resonance biosensing mass spectrometry. The epitope peptide, αGal(309–332), was synthesized by solid‐phase peptide synthesis. Determination of its affinity by surface plasmon resonance analysis revealed a high binding affinity for the antibody (KD=39×10?9 m ), which is nearly identical to that of the full‐length enzyme (KD=16×10?9 m ). The proteolytic excision affinity mass spectrometry method is shown here to be an efficient tool for epitope identification of an immunogenic lysosomal enzyme. Because the full‐length αGal and the antibody epitope showed similar binding affinities, this provides a basis for reversing immunogenicity upon ERT by: 1) treatment of patients with the epitope peptide to neutralize antibodies, or 2) removal of antibodies by apheresis, and thus significantly improving the response to ERT.  相似文献   

5.
The growing awareness of the sugar code—i.e. the biological functionality of glycans—is leading to increased interest in lectins as drug targets. The aim of this study was to establish a strategic combination of screening procedures with increased biorelevance. As a model, we used a potent plant toxin (viscumin) and lactosides synthetically modified at the C6/C6′ positions and the reducing end aglycan. Changes in the saturation transfer difference (STD) in NMR spectroscopy, applied in inhibition assays, yielded evidence for ligand activity and affinity differences. Inhibitory potency was confirmed by the blocking of lectin binding to a glycoprotein‐bearing matrix. In cell‐based assays, iodo/azido‐substituted lactose derivatives were comparatively active. Interestingly, cell‐type dependence was observed, indicating the potential of synthetic carbohydrate derivative to interact with lectins in a cell‐type (glycan profile)‐specific manner. These results are relevent to research into human lectins, glycosciences, and beyond.  相似文献   

6.
Galectin‐1 is a tumor‐associated protein recognizing the Galβ1‐4GlcNAc motif of cell‐surface glycoconjugates. Herein, we report the stepwise expansion of a multifunctional natural scaffold based on N‐acetyllactosamine (LacNAc). We obtained a LacNAc mimetic equipped with an alkynyl function on the 3′‐hydroxy group of the disaccharide facing towards a binding pocket adjacent to the carbohydrate‐recognition domain. It served as an anchor motif for further expansion by the Sharpless–Huisgen–Meldal reaction, which resulted in ligands with a binding mode almost identical to that of the natural carbohydrate template. X‐ray crystallography provided a structural understanding of the galectin‐1–ligand interactions. The results of this study enable the development of bespoke ligands for members of the galectin target family.  相似文献   

7.
Antibody–drug conjugates (ADCs) are promising alternatives to naked antibodies for selective drug‐delivery applications and treatment of diseases such as cancer. Construction of ADCs relies upon site‐selective, efficient and mild conjugation technologies. The choice of a chemical linker is especially important, as it affects the overall properties of the ADC. We envisioned that hydrophilic bifunctional chemical linkers based on carbohydrates would be a useful class of derivatization agents for the construction of linker–drug conjugates and ADCs. Herein we describe the synthesis of carbohydrate‐based derivatization agents, glycolinker–drug conjugates featuring the tubulin inhibitor monomethyl auristatin E and an ADC based on an anti‐EGFR antibody. In addition, an initial in vitro cytotoxicity evaluation of the individual components and the ADC is provided against EGFR‐positive cancer cells.  相似文献   

8.
The development of drug resistance remains a critical problem for current HIV‐1 antiviral therapies, creating a need for new inhibitors of HIV‐1 replication. We previously reported on a novel anti‐HIV‐1 compound, N2‐(phenoxyacetyl)‐N‐[4‐(1‐piperidinylcarbonyl)benzyl]glycinamide ( 14 ), that binds to the highly conserved phosphatidylinositol (4,5)‐bisphosphate (PI(4,5)P2) binding pocket of the HIV‐1 matrix (MA) protein. In this study, we re‐evaluate the hits from the virtual screen used to identify compound 14 and test them directly in an HIV‐1 replication assay using primary human peripheral blood mononuclear cells. This study resulted in the identification of three new compounds with antiviral activity; 2‐(4‐{[3‐(4‐fluorophenyl)‐1,2,4‐oxadiazol‐5‐yl]methyl})‐1‐piperazinyl)‐N‐(4‐methylphenyl)acetamide ( 7 ), 3‐(2‐ethoxyphenyl)‐5‐[[4‐(4‐nitrophenyl)piperazin‐1‐yl]methyl]‐1,2,4‐oxadiazole ( 17 ), and N‐[4‐ethoxy‐3‐(1‐piperidinylsulfonyl)phenyl]‐2‐(imidazo[2,1‐b][1,3]thiazol‐6‐yl)acetamide ( 18 ), with compound 7 being the most potent of these hits. Mechanistic studies on 7 demonstrated that it directly interacts with and functions through HIV‐1 MA. In accordance with our drug target, compound 7 competes with PI(4,5)P2 for MA binding and, as a result, diminishes the production of new virus. Mutation of residues within the PI(4,5)P2 binding site of MA decreased the antiviral effect of compound 7 . Additionally, compound 7 displays a broadly neutralizing anti‐HIV activity, with IC50 values of 7.5–15.6 μM for the group M isolates tested. Taken together, these results point towards a novel chemical probe that can be used to more closely study the biological role of MA and could, through further optimization, lead to a new class of anti‐HIV‐1 therapeutics.  相似文献   

9.
Multivalency is an important phenomenon in protein–carbohydrate interactions. In order to evaluate glycodendrimers as multivalent inhibitors of carbohydrate binding proteins, we displayed them on a microarray surface. Valencies were varied from 1 to 8, and corrections were made for the valencies so that all surfaces contained the same amount of the sugar ligand. Five different carbohydrates were attached to the dendrimers. A series of fluorescent lectins was evaluated, and for each of them a binding profile was obtained from a single experiment showing both the specificity of the lectin for a certain sugar and whether it prefers multivalent ligands or not. Very distinct binding patterns were seen for the various lectins. The results were rationalized with respect to the interbinding distances of the lectins.  相似文献   

10.
Soy protein is a valuable nutritional supplement for food and animal feed. While protein constitutes ~50 % of defatted soy flour (SF), it coexists with complex carbohydrates (30–35 %) which may have anti‐nutritional effects. An enzymatic process can remove the carbohydrate and produce protein‐enriched soy products. The hydrolysate with monomerized carbohydrates is valuable fermentation feedstock. In this study, Aspergillus niger and Trichoderma reesei enzymes were compared for use in the process. Effects of pH (3.2–6.4), temperature (40–60 °C), enzyme‐to‐SF ratio (0–2 ml/g) and SF loading (150–350 g/l) were evaluated for the enzymatic conversion of SF carbohydrate to reducing sugar (YRS) and total soluble carbohydrate (YTC) in the hydrolysate. Effects of these single factors and interactions between factors were investigated. Optimal pH and temperature were similar for both enzymes: pH 4.8 and 50–51 °C for YTC, and pH 5.1–5.2 and 48–51 °C for YRS. The two enzymes also gave similar protein contents in resultant soy protein concentrates, i.e., 74–75 % with 2 ml/g enzyme broth and 150 g/l SF, which were higher than the 64–68 % protein in commercial concentrates. A. niger enzyme was significantly more effective in carbohydrate conversion, achieving YRS = 75 % and YTC = 78 % with 2 ml/g enzyme and 150 g/l SF, higher than the YRS (30 %) and YTC (64 %) obtained with T. reesei enzyme. Monomerization was essentially complete in hydrolysate produced with A. niger enzyme.  相似文献   

11.
Herein we describe the design, multicomponent synthesis, and biological, molecular modeling and ADMET studies, as well as in vitro PAMPA‐blood–brain barrier (BBB) analysis of new tacrine–ferulic acid hybrids (TFAHs). We identified (E)‐3‐(hydroxy‐3‐methoxyphenyl)‐N‐{8[(7‐methoxy‐1,2,3,4‐tetrahydroacridin‐9‐yl)amino]octyl}‐N‐[2‐(naphthalen‐2‐ylamino)2‐oxoethyl]acrylamide (TFAH 10 n ) as a particularly interesting multipotent compound that shows moderate and completely selective inhibition of human butyrylcholinesterase (IC50=68.2 nM ), strong antioxidant activity (4.29 equiv trolox in an oxygen radical absorbance capacity (ORAC) assay), and good β‐amyloid (Aβ) anti‐aggregation properties (65.6 % at 1:1 ratio); moreover, it is able to permeate central nervous system (CNS) tissues, as determined by PAMPA‐BBB assay. Notably, even when tested at very high concentrations, TFAH 10 n easily surpasses the other TFAHs in hepatotoxicity profiling (59.4 % cell viability at 1000 μM ), affording good neuroprotection against toxic insults such as Aβ1–40, Aβ1–42, H2O2, and oligomycin A/rotenone on SH‐SY5Y cells, at 1 μM . The results reported herein support the development of new multipotent TFAH derivatives as potential drugs for the treatment of Alzheimer′s disease.  相似文献   

12.
The quest for safer anti‐inflammatory drugs is still the focus of several medicinal chemistry programs. Chromones (4H‐chromen‐4‐ones) are a group of naturally occurring compounds ubiquitous in plants, and the chromone core has proven to be a privileged scaffold in medicinal chemistry. Herein we provide an overview of the relevance of chromones as anti‐inflammatory agents, specifically as inhibitors of cyclooxygenase (COX), 5‐lipoxygenase (5‐LOX), interleukin‐5 (IL‐5), and nitric oxide (.NO) production. Numerous structure–activity relationships and mechanisms of action are discussed. This review is therefore intended to provide a foundation for the design and synthesis of novel chromone‐based compound libraries for further development into safer and more efficient anti‐inflammatory agents.  相似文献   

13.
The development of carbohydrate‐based antitumor vaccines is an attractive approach towards tumor prevention and treatment. Herein, we focused on the ganglioside GM2 tumor‐associated carbohydrate antigen (TACA), which is overexpressed in a wide range of tumor cells. GM2 was synthesized chemically and conjugated with a virus‐like particle derived from bacteriophage Qβ. Although the copper‐catalyzed azide–alkyne cycloaddition reaction efficiently introduced 237 copies of GM2 per Qβ, this construct failed to induce significant amounts of anti‐GM2 antibodies compared to the Qβ control. In contrast, GM2 immobilized on Qβ through a thiourea linker elicited high titers of IgG antibodies that recognized GM2‐positive tumor cells and effectively induced cell lysis through complement‐mediated cytotoxicity. Thus, bacteriophage Qβ is a suitable platform to boost antibody responses towards GM2, a representative member of an important class of TACA: the ganglioside.  相似文献   

14.
The Tn antigen is a carbohydrate antigen expressed in most carcinomas, during embryogenesis, on pathogenic parasites, and on HIV. It has been evaluated extensively as a potential diagnostic marker and several Tn-based vaccines are in clinical trials. Based on discrepancies in the literature regarding Tn expression, we began to question whether antibodies and lectins used routinely to detect the Tn antigen were providing accurate information. To investigate this possibility, a carbohydrate microarray and a highly sensitive assay were developed and three frequently used Tn receptors (HBTn1, Bric111, and VVL-B4) were evaluated. Carbohydrate-array analysis revealed unexpected cross-reactivity with other human carbohydrate epitopes. VVL-B4 bound the Tn antigen, GalNAcalpha1-6Gal, and GalNAcalpha1-3Gal. Bric111 bound the Tn antigen, blood group A, GalNAcalpha1-6Gal, and GalNAcalpha1-3Gal. HBTn1 showed the best selectivity, but still displayed moderate binding to blood group A. Implications for the development of Tn-based diagnostics and vaccines are discussed.  相似文献   

15.
Monoamine oxidase (MAO) generates reactive oxygen species (ROS), which cause neuronal cell death, causing neurodegeneration. Agents that are able to concurrently inhibit MAO and scavenge free radicals represent promising multifunctional neuroprotective agents that could be used to delay or slow the progression of neurodegenerative diseases. In this work, variously substituted 3‐amidocoumarins are described that exert neuroprotection in vitro against hydrogen peroxide in rat cortical neurons, as well as antioxidant activity in a 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH?) radical scavenging assay. Selective and reversible inhibitors of the MAO‐B isoform were identified. Interestingly, in the case of the 3‐benzamidocoumarins, substitution at position 4 with a hydroxy group abolishes MAO‐B activity, but the compounds remain active in the neuroprotection model. Further evaluation of 3‐heteroarylamide derivatives indicates that it is the nature of the heterocycle that determines the neuroprotective effects. Evaluation in a parallel artificial membrane permeability assay (PAMPA) highlighted the need to further improve the blood–brain barrier permeability of this compound class. However, the compounds described herein adhere to Lipinski′s rule of five, suggesting that this novel scaffold has desirable properties for the development of potential drug candidates.  相似文献   

16.
Fatty acid amide hydrolase (FAAH) is a serine hydrolase that terminates the analgesic and anti‐inflammatory effects of endocannabinoids such as anandamide. Herein, structure–activity relationship studies on a new series of aryl N‐(ω‐imidazolyl‐ and ω‐tetrazolylalkyl)carbamate inhibitors of FAAH were investigated. As one result, a pronounced increase in inhibitory potency was observed if a phenyl residue attached to the carbamate oxygen atom was replaced by a pyridin‐3‐yl moiety. The most active compounds exhibited IC50 values in the low nanomolar range. In addition, investigations on the metabolic properties of these inhibitors were performed. In rat liver homogenate and in porcine plasma, the extent of their degradation was shown to be strongly dependent on the kind of aryl residue bound to the carbamate as well as on the length and type of the alkyl spacer connecting the carbamate group with the heterocyclic system. With the aid of esterase inhibitors it was shown that in porcine plasma, carboxylesterase‐like enzymes and paraoxonase are involved in carbamate cleavage. Moreover, it was found that highly active pyridin‐3‐yl carbamates reacted with albumin, which led to covalent albumin adducts.  相似文献   

17.
Carbohydrate–protein interactions (CPIs) are involved in a wide range of biological phenomena. Hence, the characterization and presentation of carbohydrate epitopes that closely mimic the natural environment is one of the long‐term goals of glycosciences. Inspired by the multivalency, heterogeneity and nature of carbohydrate ligand‐mediated interactions, we constructed a combinatorial library of mannose and galactose homo‐ and hetero‐glycodendrons to study CPIs. Microarray analysis of these glycodendrons with a wide range of biologically important plant and animal lectins revealed that oligosaccharide structures and heterogeneity interact with each other to alter binding preferences.  相似文献   

18.
BACKGROUND: Vitamin B12 is an essential vitamin required by all mammals. Absorption of vitamin B12 is facilitated by binding of intrinsic factor–vitamin B12 complex to specific receptors in the ileum. In humans a deficiency of this vitamin or a lack of intrinsic factor leads to pernicious anaemia. The major objective of the present study was to prepare intrinsic factor–vitamin B12 complex‐loaded poly[lactic‐co‐(glycolic acid)] (PLGA)‐based microparticles and to investigate their release kinetics. RESULTS: PLGA copolymer was synthesized by the ring‐opening polymerization method and characterized using gel permeation chromatography, Fourier transform infrared spectroscopy and 1H NMR. The glass transition temperature measurement showed a single Tg at 40 °C. The intrinsic factor–vitamin B12 complex‐loaded PLGA microspheres were prepared by a water‐in‐oil‐in‐water double emulsion solvent extraction/evaporation technique. An environmental scanning electron microscopy investigation demonstrated that the PLGA particles had a mean particle diameter of 38 µm. Interestingly, different drug release patterns (bi‐ and triphasic ones) were observed for vitamin B12‐loaded and intrinsic factor–vitamin B12 complex‐loaded microspheres. In contrast to the rapid release of vitamin B12 by itself, in vitro release tests showed that intrinsic factor and vitamin B12 in the complex were released from PLGA microspheres in a sustained manner over 15 days. CONCLUSION: PLGA microspheres can be an effective carrier for the intrinsic factor–vitamin B12 complex. Copyright © 2007 Society of Chemical Industry  相似文献   

19.
A group of cyclooxygenase‐2 (COX‐2)‐specific fluorescent cancer biomarkers were synthesized by linking the anti‐inflammatory drugs ibuprofen, (S)‐naproxen, and celecoxib to the 7‐nitrobenzofurazan (NBD) fluorophore. In vitro COX‐1/COX‐2 inhibition studies indicated that all of these fluorescent conjugates are COX‐2 inhibitors (IC50 range: 0.19–23.0 μM ) with an appreciable COX‐2 selectivity index (SI≥4.3–444). In this study the celecoxib–NBD conjugate N‐(2‐((7‐nitrobenzo[c][1,2,5]oxadiazol‐4‐yl)amino)ethyl)‐4‐(5‐(p‐tolyl)‐3‐(trifluoromethyl)‐1H‐pyrazol‐1‐yl)benzenesulfonamide ( 14 ), which displayed the highest COX‐2 inhibitory potency and selectivity (COX‐2 IC50=0.19 μM ; SI=443.6), was identified as an impending COX‐2‐specific biomarker for the fluorescence imaging of cancer using a COX‐2‐expressing human colon cancer cell line (HCA‐7).  相似文献   

20.
N‐Acylethanolamine acid amidase (NAAA) is a cysteine amidase that preferentially hydrolyzes saturated or monounsaturated fatty acid ethanolamides (FAEs), such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), which are endogenous agonists of nuclear peroxisome proliferator‐activated receptor‐α (PPAR‐α). Compounds that feature an α‐amino‐β‐lactone ring have been identified as potent and selective NAAA inhibitors and have been shown to exert marked anti‐inflammatory effects that are mediated through FAE‐dependent activation of PPAR‐α. We synthesized and tested a series of racemic, diastereomerically pure β‐substituted α‐amino‐β‐lactones, as either carbamate or amide derivatives, investigating the structure–activity and structure–stability relationships (SAR and SSR) following changes in β‐substituent size, relative stereochemistry at the α‐ and β‐positions, and α‐amino functionality. Substituted carbamate derivatives emerged as more active and stable than amide analogues, with the cis configuration being generally preferred for stability. Increased steric bulk at the β‐position negatively affected NAAA inhibitory potency, while improving both chemical and plasma stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号