首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the nature and amount of dietary calories on the lipid composition of bone marrow of rats was studied. Male weanling rats were fed 3 isocaloric diets, containing high carbohydrate, normal protein, and high protein, and a fourth high fat diet for 49 days. Feeding of the high carbohydrate, high protein, and high fat diets caused a significant increase in the level of total lipids compared to the normal protein diet. This increase of total lipids was due primarily to the increase in the level of triglycerides. There was no significant difference in fatty acid composition of either nonpolar or polar lipids of bone marrow among rats fed high carbohydrate diet and those fed normal protein diet. A comparison of fatty acid compositions between bone marrow lipids of rats fed high protein diet and the other 2 isocaloric diets revealed that the proportion of palmitic acid was higher and the proportion of oleic acid was lower in animals fed high protein diet than in animals fed the other 2 diets. Compared to the 3 isocaloric low fat diets, dietary feeding of high fat diet caused a decrease in the proportion of palmitic and palmitoleic acids and an increase in the proportion of oleic and linoleic acids in total fatty acids of both nonpolar and polar lipids.  相似文献   

2.
Diets in which both the lipid content and composition (polyunsaturated to saturated fatty acid ratio) were varied were fed to rats for 20 weeks, and the effects on the tissue lipid profiles were determined. The fatty acid profile of the plasma lipids, and the phospholipid fatty acids of the mitochondrial and microsomal fractions of liver, heart, kidney and brain, as well as erythrocyte membranes were determined. Despite large differences in the level and type of lipid present in the experimental diets and in the proportion of saturated fatty acids in the plasma lipids in response to the various diets, there was little effect on the proportion of saturated to unsaturated fatty acids in the phospholipids of the various membranes examined. The major effect of altering the dietary level of polyunsaturated to saturated fatty acids was on the ratio of the ω6/ω3 series of unsaturated fatty acids in the membrane lipids. This change occurred in all tissues except the brain, in which only a small response to altered dietary lipid intake was observed. The ω6/ω3 ratio was elevated upon feeding a diet rich in ω6 polyunsaturated fatty acids, but decreased when a diet rich in saturated fatty acids was fed. The failure to significantly alter membrane lipid saturation/unsaturation in the tissues examined would suggest that a homeostatic mechanism is operative in biological membranes and may act to buffer membranes from the effects of changes in the nature of the dietary lipid intake.  相似文献   

3.
Male weanling rats were fed semi-synthetic diets high in saturated fat (beef tallow) vs high in linoleic acid (safflower oil) with or without high levels of α-linolenic acid (linseed oil) for a period of 28 days. The effect of feeding these diets on cholesterol content and fatty acid composition of serum and liver lipids was examined. Feeding linseed oil with beef tallow or safflower oil had no significant effect on serum levels of cholesterol. Serum cholesterol concentration was higher in animals fed the safflower oil diet than in animals fed the beef tallow diet without linseed oil. Feeding linseed oil lowered the cholesterol content in liver tissue for all dietary treatments tested. Consumption of linseed oil reduced the arachidonic acid content with concomitant increase in linoleic acid in serum and liver lipid fractions only when fed in combination with beef tallow, but not when fed with safflower oil. Similarly, ω3 fatty acids (18∶3ω3, 20∶5ω3, 22∶5ω3, 22∶6ω3) replaced ω6 fatty acids (20∶4ω6, 22∶4ω6) in serum and liver lipid fractions to a greater extent when linseed oil was fed with beef tallow than with safflower oil. The results suggest that the dietary ratio of linoleic acid to saturated fatty acids or of 18∶3ω3 to 18∶2ω6 may be important to determine the cholesterol and arachidonic acid lowering effect of dietary α-linolenic acid.  相似文献   

4.
G. J. Hopkins  C. E. West 《Lipids》1977,12(4):327-334
Hepatocyte plasma membranes were isolated from the livers of mice fed either a low fat diet or high fat diets containing polyunsaturated or saturated fat. The combined rate and isopycnic ultracentrifugation technique which was used produced highly purified hepatocyte plasma membrane fractions. The efficacy of the procedure was checked by electron microscopy and the assay of marker enzymes for the different subcellular organelles. Mice were maintained on a low fat diet until 60–70 days of age, when they were fed high fat diets containing polyunsaturated or saturated fat. The hepatocyte plasma membrane lipids of mice fed the polyunsaturated fat diet for 4 wk contained increased proportions of the major dietary unsaturated fatty acid, linoleic acid, and increased proportions of arachidonic acid. The proportion of linoleic and arachidonic acids decreased with continued feeding of the polyunsaturated fat diet. The hepatocyte plasma membrane lipids of mice fed the saturated fat diet contained increased proportions of oleic acid.  相似文献   

5.
The minimum requirement of linoleic acid to prevent effects of dietary C18trans fatty acids on eicosanoid biosynthesis in rats was assessed. In a first experiment, six groups of animals were fed diets with a high content oftrans fatty acids [20% of energy (en%)], and increasing amounts of linoleic acid (0.4 to 7.1 en%). In a second experiment, four groups of rats were fed diets designed to comparetrans fatty acids with saturated andcis-monounsaturated fatty acids of the same chain length at the 2 en% linoleic acid level. After 9–14 weeks the biosynthesis of prostacyclin by pieces of aorta and the biosynthesis of hydroxy-heptadecatrienoic acid and 12-hydroxy-eicosatetraenoic acid by platelets were measured. The fatty acid compositions of aorta phospholipid and platelet lipid were also determined. Both the prostacyclin-production by aorta pieces and the production of hydroxy-heptadecatrienoic acid and 12-hydroxy-eicosatetraenoic acid by platelets appeared to be a linear function of the arachidonic acid level in aorta phospholipid and platelet lipid, irrespective of thetrans fatty acid content in the diet. This indicates thattrans fatty acids do not directly influence enzymes involved in eicosanoid biosynthesis. In a direct comparison withcis-monounsaturated or saturated fatty acids with 2 en% linoleic acid in the diet, only a moderate reduction in arachidonic acid level in aorta phospholipids in the group fedtrans fatty acids was observed. The geometry of the double bond did not influence the arachidonic acid level in platelet lipid, although the diet rich in saturated fatty acids increased arachidonic acid levels significantly compared with all other diets. Neither prostacyclin-production nor hydroxy-heptadecatrienoic acid or 12-hydroxy-eicosatetraenoic acid-production were significantly affected bytrans fatty acids when 2 en% linoleic acid was present in the diet. Our study indicates that in rats 2 en% linoleic acid is sufficient to prevent effects of dietarytrans fatty acids on eicosanoid synthesis.  相似文献   

6.
The biohydrogenation of unsaturated fatty acids and the preferential absorption of unsaturated fatty acids over long chain saturated fatty acids from the gut have been investigated to find the origin of the high saturated fatty acid content of the facal lipids of rats fed soybean oil. Label from dietary (1-14C)-linoleic acid was recovered in the saturated and monounsaturated fatty acids of the fecal lipid. However, when (9,10-3H)-stearic acid and (1-14C)-linoleic acid were fed together, the isotope ratio (3H/14C) of the fecal lipid was 1.9 times that of the diet. It is concluded that both processes occur.  相似文献   

7.
Diets supplemented with high levels of saturated fatty acids derived from sheep kidney (perirenal) fat or unsaturated fatty acids derived from sunflowerseed oil were fed to marmoset monkeys for 22 wk. The effect of such diets on plasma, red blood cell phospholipids, and liver, heart, kidney and brain mitochondrial phospholipid fatty acids was determined. Despite large differences in the level and type of lipid present in the experimental diets, there was little effect on the proportion of saturated to unsaturated fatty acids in the phospholipids of the membranes examined. The diets did, however, alter the proportion of the various classes of polyunsaturated fatty acids in the membrane phospholipids, with the sunflower-seed oil diet elevating and the sheep kidney fat diet reducing the n−6/n−3 unsaturated fatty acid ratio, relative to a low (mixed fat) reference diet. This change occurred in all membranes except brain, in which only a small response to altered dietary lipid intake was observed. Elevation of dietary linoleic acid led to an increase in membrane linoleic acid and a marked decrease in membrane arachidonic acid, such that the membranes from animals fed the sunflowerseed oil diet exhibited the lowest proportion of arachidonic acid. In this latter respect, the response of the marmoset monkey to dietary lipid supplementation differs markedly from the rat. Our inability to alter significantly membrane lipid saturation/unsaturation supports the notion that a homeostatic mechanism is in some way responsible for buffering membranes from the effects of significant changes in the nature of the dietary lipid intake.  相似文献   

8.
The amount of linoleic acid required to prevent undesirable effects of C18trans fatty acids was investigated. In a first experiment, six groups of rats were fed diets with a high content oftrans fatty acids (20% of energy [en%]), and increasing amounts of linoleic acid (0.4 to 7.1 en%). In a second experiment, four groups of rats were fed diets designed to comparetrans fatty acids with saturated andcis-monounsaturated fatty acids of the same chain length at the 2 en% linoleic acid level. After 9–14 weeks, the oxygen uptake, lipid composition and ATP synthesis of heart and liver mitochondria were determined. The phospholipid composition of the mitochondria did not change, but the fatty acid compositions of the two main mitochondrial phospholipids were influenced by the dietary fats.Trans fatty acids were incorporated in all phospholipids investigated. The linoleic acid level in the phospholipids, irrespective of the dietary content of linoleic acid, increased on incorporation oftrans fatty acids. The arachidonic acid level had decreased in most phospholipids in animals fed diets containing 2 en% linoleic acid. At higher linoleic acid intakes, the effect oftrans fatty acids on the phospholipid arachidonic acid level diminished. However, in heart mitochondrial phosphatidylethanolamine,trans fatty acids significantly increased the arachidonic acid level. Despite these changes in composition, neither the amount of dietary linoleic acid nor the addition oftrans fatty acids influenced the mitochondrial function. For rats, a level of 2 en% of linoleic acid is sufficient to prevent undesirable effects of high amounts of dietary C18trans fatty acids on the mitochondrial function.  相似文献   

9.
The aim of the present study was to compare the effects of a low-fat diet enriched with oleic acid to those of a low-fat diet enriched with linoleic acid on fasting lipids, postprandial lipemia, and oxidative susceptibility of low-density lipoprotein (LDL) in patients with type 2 diabetes mellitus (DM). In a 3-wk randomized crossover study, eight patients with type 2 DM were given an experimental low-fat diet enriched with either oleic acid or linoleic acid. The oleic-acid-enriched diet contained 5, 15, and 5% energy from saturated, monounsaturated, and polyunsaturated fatty acids, and the linoleic-acid-enriched diet contained 5, 5, and 15% energy from saturated, monounsaturated, and polyunsaturated fatty acids, respectively. In addition to evaluating the fasting lipids and oxidative susceptibility of LDL, we evaluated postprandial lipemia using an oral fat load at the end of each 3-wk dietary phase. There were no significant differences in fasting lipid profile or lag time of LDL oxidation between the two experimental dietary phases. The average and maximal increments of remnant-like particle (RLP) cholesterol levels during oral fat load were significantly higher after the oleic-acid-enriched dietary phase than after the linoleic-acid-enriched dietary phase. The area under the curve of RLP cholesterol was also significantly larger after the oleicacid-enriched dietary phase than after the linoleic-acid-enriched dietary phase. These results suggest that the oleic-acidenriched diet was associated with increased formation of postprandial chylomicron remnants compared with the linoleicacid-enriched diet.  相似文献   

10.
High concentrations of polyunsaturated fatty acids (PUFA) in meat have detrimental effects on its technical properties. The present study was carried out to investigate whether PUFA levels in pork can be reduced by increasing the concentrations of oleic acid in pig diets. To this end a bifactorial experiment was carried out with 48 female growing finishing pigs. Six different diets were used with two different concentrations of linoleic acid (12 vs. 24 g/kg) and three different concentrations of oleic acid (12 vs. 18 vs. 24 g/kg). The experiment started at a body weight (BW) of 58 kg and continued until 115 kg BW. The fatty acid composition of total lipids of backfat, perirenal fat and musculus (m.) longissimus dorsi was analysed. Concentrations of linoleic acid and total PUFA in backfat and perirenal fat were affected only by the dietary linoleic acid content but not at all by the dietary oleic acid content. Increasing the dietary concentration of oleic acid raised the level of oleic acid in those tissues at the expense of saturated fatty acids, suggesting competition between monounsaturated fatty acids and saturated fatty acids for incorporation into triglycerides. At the low dietary linoleic acid concentration, the percentages of linoleic acid and total PUFA in total lipids of m. longissimus dorsi were also unaffected by the dietary oleic acid content. In contrast, at the high dietary linoleic acid concentration, percentages of linoleic acid and total PUFA of the m. longissimus dorsi were reduced by increasing the dietary concentration of oleic acid, suggesting that oleic acid and linoleic acid compete for incorporation into muscle lipids. Thus, at high dietary linoleic acid levels the fatty acid composition of the m. longissimus dorsi was favourably affected by high dietary oleic acid concentrations; in backfat and perirenal fat, however, no beneficial effect of high dietary oleic acid levels was seen.  相似文献   

11.
J. K. G. Kramer 《Lipids》1980,15(9):651-660
Male Sprague-Dawley rats were fed diets for 1 or 16 weeks, containing 20% by weight vegetable oils differing widely in their oleic, linoleic and linolenic acid content. No significant changes were observed in the level of the cardiac lipid classes. The fatty acid composition of the 2 major phospholipids, phosphatidylcholine and phosphatidylethanolamine, showed a remarkable similarity between diets in the concentration of total saturated, C22 polyunsaturated and arachidonic acids. Monounsaturated acids were incorporated depending on their dietary concentration, but the increases were moderate. Dietary linolenic acid rapidly substituted C22 polyunsaturated fatty acids of the linoleic acid family (n−6) with those from the linolenic acid family (n−3). The results suggest that dietary linolenic acid of less than 15% does not inhibit the conversion of linoleic to arachidonic acid but the subsequent conversion of arachidonic acid to the C22 polyunsaturates was greatly reduced. Significant amounts of dietary monounsaturated fatty acids were incorporated into cardiac cardiolipin accompanied by increases in polyunsaturated fatty acids, apparently to maintain an average of 2 double bonds/molecule. The cardiac sphingomyelins also accumulated monounsaturated fatty acids depending on the dietary concentration. It is quite evident from the results of this study that the incorporation of oleic acid and the substitution of linolenic for linoleic acid-derived C22 polyunsaturated fatty acids into cardiac phospholipids was related to the dietary concentration of these fatty acids and was not peculiar to any specific oil. Even though it is impossible to estimate the effect of such changes in cardiac phospholipids on membrane structure and function, results are discussed which suggest that the resultant membrane in the Sprague-Dawley male rat is more fragile, leading to greater cellular breakdown and focal necrosis. Contribution No. 914 from the Animal Research Institute.  相似文献   

12.
Male Sprague-Dawley rats were fed for one week diets containing 20% by weight fat/oil mixtures with different levels of erucic acid (22∶1n−9) (∼2.5 or 9%) and total saturated fatty acids (∼8 or 35%). Corn oil and high erucic acid rapeseed (HEAR) oil were fed as controls. The same hearts were evaluated histologically using oil red O staining and chemically for cardiac triacylglycerol (TAG) and 22∶1n−9 content in cardiac TAG to compare the three methods for assessing lipid accumulation in rat hearts. Rats fed corn oil showed trace myocardial lipidosis by staining, and a cardiac TAG content of 3.6 mg/g wet weight in the absence of dietary 22∶1n−9. An increase in dietary 22∶1n−9 resulted in significantly increased myocardial lipidosis as assessed histologically and by an accumulation of 22∶1n−9 in heart lipids; there was no increase in cardiac TAG except when HEAR oil was fed. An increase in saturated fatty acids showed no changes in myocardial lipid content assessed histologically, the content of cardiac TAG or the 22∶1n−9 content of TAG at either 2.5 or 9% dietary 22∶1n−9. The histological staining method was more significantly correlated to 22∶1n−9 in cardiac TAG (r=0.49;P<0.001) than to total cardiac TAG (r=0.40;P<0.05). The 22∶1n−9 content was highest in cardiac TAG and free fatty acids. Among the cardiac phospholipids, the highest incorporation was observed into phosphatidylserine, followed by sphingomyelin. With the addition of saturated fat, the fatty acid composition showed decreased accumulation of 22∶1n−9 and increased levels of arachidonic and docosahexaenoic acids in most cardiac phospholipids, despite decreased dietary concentrations of their precursor fatty acids, linoleic and linolenic acids.  相似文献   

13.
A few species ofFusarium have been evaluated for their potential to produce lipids. The isolates under investigation exhibited wide variation with respect to the mycelial weight, total lipid content and percentage composition of polar and nonpolar lipids in which triglycerides were the major components (81–90%). Palmitic, stearic, oleic and linoleic acids were the major fatty acids in both the fractions. The polar lipids contained higher levels of linoleic acid, whereas nonpolar lipids contained oleic acid as the predominant acid. Nonpolar lipids were more saturated than polar lipids.  相似文献   

14.
Lecithins (separated on basic silicic acid columns) were obtained from humans fed three different diets: eitherad-libitum or diets containing 40% of calories from linoleic acid (as corn oil) or from oleic acid (as triolein). Four lecithin subfractions were studied from each dietary group. Lecithin fractions eluting earliest (and apparently the least polar) contained the highest molar ratios of unsaturated fatty acids and the highest proportion of C-20 to C-22 polyunsaturated fatty acids. A slight increase in proportions of diunsaturated molecules occurred in corn oil and triolein groups. However, over 90% of lecithins of each dietary group were maintained as themonosaturated - monounsaturated type. Therefore, in contrast to human adipose tissue triglycerides, the saturated/unsaturated fatty acid ratio of lecithins of the erythrocyte membrane is largely unaffected by immense increases in dietary unsaturated fatty acid. Major shifts of oleic and linoleic acid occurred but proportions were unaltered of longer chain length (>C-18) polyunsaturated fatty acids. The relevance of these findings to membrane structure and function and to glycerophosphatide biosynthesis is discussed.  相似文献   

15.
In this study we determined the time-course for the onset and the loss of the effect of short-term feeding rats isocaloric semisynthetic diets containing a high content of saturated (HS) or polyunsaturated (HP) fatty acids on the jejunal and ileal uptake of medium- and long chain fatty acids, cholesterol and glucose. Animals were fed HP or HS for 3, 7 or 14 days; then the diet was switched to standard Purina® rat chow for a further 3, 7 or 14 days. The uptake of medium chain fatty acids was unchanged. The differences between HP and HS in glucose uptake occurred within 3 days, but persisted for 14 days, whereas there were qualitative as well as quantitative changes in the pattern of lipid uptake: differences in uptake of stearic, oleic, linoleic and linolenic acids and cholesterol occurred after 7 days of feeding HP or HS. Jejunal uptake of linoleic acid was greater in HP than HS on day 7, but HS was greater than HP on day 14. The effect of diet on lipid uptake was similar in the jejunum and ileum. The altered uptake of stearic and oleic acids persisted after the rats were switched back to chow, whereas the uptake of the other nutrients became similar. Thus, (i) changes in dietary content of saturated and polyunsaturated fatty acids have early effects on intestinal transport function; (ii) some of these changes persist even when animals are returned to feeding on chow; and (iii) glucose transport is rapidly altered by dietary changes, whereas lipid uptake changes only after 7 days. We conclude that the transport function of the intestine is responsive to changes in dietary fatty acids.  相似文献   

16.
Twelve-week-old Landes male geese were overfed with corn for 21 d in order to induce liver steatosis (fatty liver). Lipid composition of hepatocyte plasma membranes from fatty livers was compared to that of lean livers obtained from geese fed a normal diet. The ratio cholesterol/phospholipids was higher in fatty hepatocyte plasma membranes (0.63 vs. 0.47), whereas the phospholipid/protein ratio was less than half. Overfeeding induced changes in fatty acid composition of hepatocyte plasma membranes, including a greater than twofold increase in the percentage of oleic acid (29.7 vs. 13.8%) and a somewhat lesser increase in lauric, palmitic, and palmitoleic acid contents of plasma membrane lipids of fatty livers. A concomitant reduction in the proportion of stearic acid (18.4 vs. 25.1%) was also observed. In fatty livers, the increased ratio of saturated to polyunsaturated fatty acids (PUFA) (1.5 vs. 1.0) was related to a significant decrease in PUFA content. Among all the PUFA, only the eicosatrienoic acid (20∶3n−9) percentage was increased by liver steatosis. Overfeeding with corn appeared to induce competition between de novo synthesized and dietary fatty acids incorporated in hepatocyte plasma membranes. This resulted in an accumulation of de novo synthesized monounsaturated and derived fatty acids in plasma membranes from overfed birds. A defect in the incorporation of linoleic acid and linoleic- and linolenic-derived PUFA was observed despite the high proportion of these essential fatty acids in the diet. It was conclued that in overfed palmipeds, de novo hepatic lipogenesis prevails over dietary lipid intake to modulate lipid composition of the fatty liver plasma membrane.  相似文献   

17.
Total lipids in medium and low erucic acid cul-tivars of rapeseed(Brassica napus var. Sinus and Janpol, resp.) were fractionated into polar and non-polar constituents. Triglycerides, diglycerides, mono-glycerides, free fatty acids, sterol esters, sterols, phos-pholipids and glycolipids were quantitated and their fatty acid compositions determined. Triglycerides and phospholipids constituted 92 and 3.4%, resp., of the total lipid from each cultivar. Triglycerides were lower in saturated fatty acids but higher in monoun-saturated acids and linolenic acid than other lipid fractions. Phospholipids and glycolipids were higher in linoleic acid content than other lipid classes. Generally, the reduction in long chain, monoenoic, fatty acids was associated with a corresponding increase in oleic acid in most low erucic acid frac-tions.  相似文献   

18.
Three groups of sixteen male rats each were fed semipurified diets containing 15% by weight of lipid for a period of 4 wk. The diets contained the same amount of polyunsaturated fatty acids (PUFA) (20% of total fatty acids) and saturated fatty acids (19% of total fatty acids). Dietary PUFA were represented exclusively by linoleic acid (18∶2 diet), or 10% linoleic acid and 10% linolenic acid (18∶3 diet), or 10% linoleic acid and 10% long-chain n−3 fatty acids (LCn−3 diet). The overall amount of vitamin E was similar in the three diets,i.e, 140, 133 and 129 mg/kg diet, respectively. Following appropriate extraction, tocopherol levels in heart, liver, brain, adipose tissue (AT) and plasma were measured by high-performance liquid chromatography. The level of vitamin E in the heart decreased with n−3 PUFA diets, most markedly with LCn−3 PUFA. Liver and AT vitamin E contents also decreased with n−3 PUFA diets when expressed as μg/mg total lipids and μg/mg phospholipids, respectively. Total plasma vitamin E was lower in rats fed the LCn−3 diet, but there was no significant difference when expressed as μg/mg total lipids. Brain vitamin E was not affected by the various diets.In vitro cardiac lipid peroxidation was quantified by the thiobarbituric acid reactive substances (TBARS) test. Heart homogenates were incubated at 37°C for 15 and 30 min in both the absence (uninduced) or presence (induced) of a free radical generating system (1 mM xanthine, 0.1 IU per mL xanthine oxidase, 0.2 mM/0.4 mM Fe/ethylenediaminetetraacetic acid). TBARS release was time-independent but significantly higher when LCn−3 fatty acids were fed to rats in either the uninduced or induced system. The study demonstrated that n−3 PUFA diets can influence vitamin E status of rats even in short-term experiments and can change the susceptibility of the heart toin vitro lipid peroxidation.  相似文献   

19.
trans Isometric fatty acids of partially hydrogenated fish oil (PHFO) consist oftrans 20∶1 andtrans 22∶1 in addition to thetrans isomers of 18∶1, which are abundant in hydrogenated vegetable oils, such as in partially hydrogenated soybean oil (PHSBO). The effects of dietarytrans fatty acids in PHFO and PHSBO on the fatty acid composition of milk were studied at 0 (colostrum) and 21 dayspostpartum in sows. The dietary fats were PHFO (28%trans), or PHSBO (36%trans) and lard. Sunflower seed oil (4%) was added to each diet. The fats were fed from three weeks of age throughout the lactation period of Experiment 1. In Experiment 2 PHFO or “fully” hydrogenated fish oil (HFO) (19%trans), in comparison with coconut oil (CF) (0%trans), was fed with two levels of dietary linoleic acid, 1 and 2.7% from conception throughout the lactation period. Feedingtrans-containing fats led to secretion oftrans fatty acids in the milk lipids. Levels oftrans 18∶1 andtrans 20∶1 in milk lipids, as percentages of totalcis+trans 18∶1 andcis+trans 20∶1, respectively, were about 60% of that of the dietary fats, with no significant differences between PHFO and PHSBO. The levels were similar for colostrum and milk. Feeding HFO gave relatively lesstrans 18∶1 andtrans 20∶1 fatty acids in milk lipids than did PHFO and PHSBO. Only low levels ofcis+trans 22∶1 were found in milk lipids. Feedingtrans-containing fat had no consistent effects on the level of polyenoic fatty acids but reduced the level of saturated fatty acids and increased the level ofcis+trans monoenoic fatty acids. Increasing the dietary level of linoleic acid had no effect on the secretion oftrans fatty acids but increased the level of linoleic acid in milk. The overall conclusion was that the effect of dietary fats containingtrans fatty acids on the fat content and the fatty acid composition of colostrum and milk in sows were moderate to minor.  相似文献   

20.
Recent statements concerning linoleic (LA) and α-linolenic acid (LNA) intakes for infants include a desirable range of LA/LNA ratios. To evaluate several dietary LA/LNA ratios, the fatty acid patterns of plasma and erythrocyte phospholipid fractions, as well as plasma total lipid fractions, were determined shortly after birth and at 21, 60, and 120 d of age in term infants fed formula with 16% of fat as LA and either 0.4, 0.95, 1.7, or 3.2% as LNA (LA/LNA ratios of approximately 44, 18, 10, and 5). The content of all n-3 fatty acids in both plasma fractions was higher at all times in infants who received the highest LNA intake; however, the docosahexaenoic acid (DHA) content was only half that shortly after birth or reported in breast-fed infants of comparable ages. The LA content of plasma lipids of all groups was higher at all times than shortly after birth but did not differ among groups. The arachidonic acid (AA) content was higher in infants who received the lowest LNA intake, but only half that at birth or reported in breast-fed infants. In contrast, the DHA content of the erythrocyte phospholipid fraction did not differ among groups until 120 d of age when it was higher in those who received the highest LNA intake and the AA content of this fraction did not differ among groups at any time. These data demonstrate that dietary LA/LNA ratios between 5 and 44 do not result in plasma or erythrocyte lipid levels of DHA or plasma lipid levels of AA similar to those at birth or reported by others in breast-fed infants. However, the data indicate that the LA/LNA ratio of the formula is an important determinant of the amounts of DHA and AA required to achieve plasma and erythrocyte levels of these fatty acids similar to those of breast-fed infants. Based on a presentation at the AOCS Annual Meeting & Expo in San Antonio, Texas, May 7–11, 1995.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号