共查询到20条相似文献,搜索用时 0 毫秒
1.
In order to improve the spatial resolution achieved by magnetic force microscopy (MFM) technique and its derivatives, we employ here advanced MFM tips fabricated by means of focused ion beam (FIB) milling. The magnetic coating applied on these tips is a CoCr film of 10 nm thickness. The MFM measurements on hard disk test samples reveal the achieved high resolution, and the measurement on a garnet film demonstrates the low invasiveness. High-frequency MFM (HF-MFM) is a development of the MFM technique to observe the HF stray fields emerging from magnetic recording writer poles at their operating conditions. By means of HF-MFM, magnetic recording writer poles are characterized in the frequency range 100-1,000 MHz. Up to now, all HF-MFM experiments conducted were using standard MFM cantilevers. From the HF-MFM images obtained using the advanced MFM cantilevers, it is clearly seen that the spatial resolution is considerably improved over the images obtained using standard MFM tips. However, the 10 nm thick magnetic coating of the cantilevers is found to work properly only at frequencies of up to about 500 MHz. 相似文献
2.
We present a new method to improve the accuracy of force application and hardness measurements in hard surfaces by using low-force (<50 μN) nanoindentation technique with a cube-corner diamond tip mounted on an atomic force microscopy (AFM) sapphire cantilever. A force calibration procedure based on the force-matching method, which explicitly includes the tip geometry and the tip-substrate deformation during calibration, is proposed. A computer algorithm to automate this calibration procedure is also made available. The proposed methodology is verified experimentally by conducting AFM nanoindentations on fused quartz, Si(1 0 0) and a 100-nm-thick film of gold deposited on Si(1 0 0). Comparison of experimental results with finite element simulations and literature data yields excellent agreement. In particular, hardness measurements using AFM nanoindentation in fused quartz show a systematic error less than 2% when applying the force-matching method, as opposed to 37% with the standard protocol. Furthermore, the residual impressions left in the different substrates are examined in detail using non-contact AFM imaging with the same diamond probe. The uncertainty of method to measure the projected area of contact at maximum force due to elastic recovery effects is also discussed. 相似文献
3.
《Ultramicroscopy》2011,111(1):11-19
We present a new method to improve the accuracy of force application and hardness measurements in hard surfaces by using low-force (<50 μN) nanoindentation technique with a cube-corner diamond tip mounted on an atomic force microscopy (AFM) sapphire cantilever. A force calibration procedure based on the force-matching method, which explicitly includes the tip geometry and the tip-substrate deformation during calibration, is proposed. A computer algorithm to automate this calibration procedure is also made available. The proposed methodology is verified experimentally by conducting AFM nanoindentations on fused quartz, Si(1 0 0) and a 100-nm-thick film of gold deposited on Si(1 0 0). Comparison of experimental results with finite element simulations and literature data yields excellent agreement. In particular, hardness measurements using AFM nanoindentation in fused quartz show a systematic error less than 2% when applying the force-matching method, as opposed to 37% with the standard protocol. Furthermore, the residual impressions left in the different substrates are examined in detail using non-contact AFM imaging with the same diamond probe. The uncertainty of method to measure the projected area of contact at maximum force due to elastic recovery effects is also discussed. 相似文献
4.
Zypman F 《Ultramicroscopy》2011,111(8):1014-1017
In this paper we build a practical modification to the standard Euler-Bernoulli equation for flexural modes of cantilever vibrations most relevant for operation of AFM in high vacuum conditions. This is done by the study of a new internal dissipation term into the Euler-Bernoulli equation. This term remains valid in ultra-high vacuum, and becomes particularly relevant when viscous dissipation with the fluid environment becomes negligible. We derive a compact explicit equation for the quality factor versus pressure for all the flexural modes. This expression is used to compare with corresponding extant high vacuum experiments. We demonstrate that a single internal dissipation parameter and a single viscosity parameter provide enough information to reproduce the first three experimental flexural resonances at all pressures. The new term introduced here has a mesoscopic origin in the relative motion between adjacent layers in the cantilever. 相似文献
5.
Atomic force microscopy (AFM) can be used to measure the surface morphologies and the mechanical properties of nanostructures. The force acting on the AFM cantilever can be obtained by multiplying the spring constant of AFM cantilever and the corresponding deformation. To improve the accuracy of force experiments, the spring constant of AFM cantilever must be calibrated carefully. Many methods, such as theoretical equations, the finite element method, and the use of reference cantilever, were reported to obtain the spring constant of AFM cantilevers. For the cantilever made of single crystal, the Poisson's ratio varies with different cantilever-crystal angles. In this paper, the influences of Poisson's ratio variation on the lateral spring constant and axial spring constant of rectangular and V-shaped AFM cantilevers, with different tilt angles and normal forces, were investigated by the finite element analysis. When the cantilever's tilt angle is 20 degrees and the Poisson's ratio varies from 0.02 to 0.4, the finite element results show that the lateral spring constants decrease 11.75% for the rectangular cantilever with 1muN landing force and decrease 18.60% for the V-shaped cantilever with 50nN landing force, respectively. The influence of Poisson's ratio variation on axial spring constant is less than 3% for both rectangular and V-shaped cantilevers. As the tilt angle increases, the axial spring constants for rectangular and V-shaped cantilevers decrease substantially. The results obtained can be used to improve the accuracy of the lateral force measurement when using atomic force microscopy. 相似文献
6.
This article summarizes improvements to the speed, simplicity and versatility of tapping mode atomic force microscopy (AFM). Improvements are enabled by a piezoelectric microcantilever with a sharp silicon tip and a thin, low-stress zinc oxide (ZnO) film to both actuate and sense deflection. First, we demonstrate self-sensing tapping mode without laser detection. Similar previous work has been limited by unoptimized probe tips, cantilever thicknesses, and stress in the piezoelectric films. Tests indicate self-sensing amplitude resolution is as good or better than optical detection, with double the sensitivity, using the same type of cantilever. Second, we demonstrate self-oscillating tapping mode AFM. The cantilever's integrated piezoelectric film serves as the frequency-determining component of an oscillator circuit. The circuit oscillates the cantilever near its resonant frequency by applying positive feedback to the film. We present images and force-distance curves using both self-sensing and self-oscillating techniques. Finally, high-speed tapping mode imaging in liquid, where electric components of the cantilever require insulation, is demonstrated. Three cantilever coating schemes are tested. The insulated microactuator is used to simultaneously vibrate and actuate the cantilever over topographical features. Preliminary images in water and saline are presented, including one taken at 75.5 μm/s—a threefold improvement in bandwidth versus conventional piezotube actuators. 相似文献
7.
The microfabricated silicon nitride cantilevers that are used for atomic force microscopy (AFM) are, unfortunately, sensitive thermometers. They bend with ambient temperature changes and those due to laser heating. The bend can result in displacements for the silicon nitride cantilevers of an order several hundred nanometers at the tip of the cantilever. If, however, the silicon nitride cantilevers are treated by removing the metallization and annealing at 500°C for 30 min, these displacements can be reduced by one or two orders of magnitude. Silicon cantilevers have approximately a one order of magnitude smaller drift than silicon nitride cantilevers as received from vendors and are improved less by treatment. 相似文献
8.
In transverse dynamic force microscopy a cylindrically tapered cantilever is mounted perpendicularly to the sample surface and set into transversal oscillation. The dynamics of the cantilever has been studied using the continuum mechanical model with discrete element analysis. A viscoelastic model has been used to describe the tip-sample interaction. In this way an in-phase and an out-of-phase component of the force has been extracted from the experimental data. Two different techniques, involving two experimental setups and two corresponding data analysis routines, have been developed to calculate the two components of the force at different tip-sample separations. In one case the change in resonant frequency and corresponding oscillation amplitude is measured whereas in the second case the usual way of recording amplitude and phase signal at a fixed driving frequency is applied. The results from these two methods are shown to be completely consistent and produce almost identical force curves. 相似文献
9.
A complementary-metal-oxide-semiconductor-field-effect-transistor-compatible process for the fabrication of atomic force microscopy cantilevers with integrated tips has been developed. For the first time, the tips are fabricated after the completion of the regular complementary metal-oxide-semiconductor-field-effect-transistor fabrication process sequence. On-chip circuit components, such as piezoresistive deflection sensors, deflection actuators, and amplifiers, are fabricated on the mirror-polished surface of the wafer, ensuring optimal performance. The tip fabrication process is based on anisotropic silicon etching at low temperature using a tetramethylammonium hydroxide solution. The anisotropic etching process has been optimized to ensure process controllability. Using the described process, complementary-metal-oxide-semiconductor-field-effect-transistor-based cantilevers with piezoresistive deflection sensors and integrated tips have been successfully fabricated. Force-distance curves and scanning images in constant-force mode have been recorded. 相似文献
10.
Atomic force microscopy (AFM) is a widely used technique for characterizing the topography and frictional properties of nanostructures. Inherent misalignments between the AFM cantilever and the feedback hardware lead to crosstalk between topography data and lateral force microscopy (LFM) data. Because the degree of crosstalk depends on the positioning of the cantilever, LFM and topography data of the same structure can vary from one experiment to the next. For nanostructures with large LFM contrast, errors as large as 50% in topography and LFM can be observed. This paper describes an empirical strategy for correcting this alignment error. The technique is used to characterize the frictional properties of scanning probe-induced oxide nanostructures and the hydrogen-terminated Si(111) surfaces on which they are patterned. Reproducible differences in the frictional properties of the oxide nanostructures patterned on HF-treated and NH4F-treated Si(111) surfaces are observed and attributed to the mixed-hydride versus monohydride termination of each surface. The observed frictional contrast is consistent with known differences in surface reactivity and demonstrates how LFM measurements can provide insight into the frictional and chemical properties of nanostructures 相似文献
11.
We demonstrate a method to fabricate a high-aspect ratio metal tip attached to microfabricated cantilevers with controlled angle, length, and radius, for use in electrostatic force microscopy. A metal wire, after gluing it into a guiding slot that is cut into the cantilever, is shaped into a long, thin tip using a focused ion beam. The high-aspect ratio results in considerable reduction of the capacitive force between tip body and sample when compared to a metal coated pyramidal tip. 相似文献
12.
A model single strand DNA (ssDNA) was covalently immobilized onto AFM tips (cantilevers) as specific ligand. These tips were interacted with the buffer solutions with or without free ssDNA molecules as the target strands to be detected. Immobilization and hybridization onto the cantilever surfaces were observed by optical and fluorescence microscopies. Interactions between the AFM tip (cantilever) and the aqueous medium (therefore with the target ssDNAs) were quantified by obtaining the "percent separation distance" ("PSD") as the main variable. The PSD values obtained for the buffer solutions were between -2.07 and +4.91%. There were slight increases in the negative values when non-complementary ssDNA molecules were introduced into the buffer. However, after hybridization with its complementary ssDNA, the PSD values were significantly increased (between -32.24 and -43.47%). There was a correlation between the concentration of the complementary target ssDNA in the medium and the PSD value. As a result of these promising results it was concluded that this approach may be further developed to create AFM-based molecular sensors for diverse applications. 相似文献
13.
Easy and direct method for calibrating atomic force microscopy lateral force measurements 总被引:1,自引:0,他引:1
We have designed and tested a new, inexpensive, easy-to-make and easy-to-use calibration standard for atomic force microscopy (AFM) lateral force measurements. This new standard simply consists of a small glass fiber of known dimensions and Young's modulus, which is fixed at one end to a substrate and which can be bent laterally with the AFM tip at the other end. This standard has equal or less error than the commonly used method of using beam mechanics to determine a cantilever's lateral force constant. It is transferable, thus providing a universal tool for comparing the calibrations of different instruments. It does not require knowledge of the cantilever dimensions and composition or its tip height. This standard also allows direct conversion of the photodiode signal to force and, thus, circumvents the requirement for a sensor response (sensitivity) measurement. 相似文献
14.
Langlois ED Shaw GA Kramar JA Pratt JR Hurley DC 《The Review of scientific instruments》2007,78(9):093705
We describe a method to calibrate the spring constants of cantilevers for atomic force microscopy (AFM). The method makes use of a "piezosensor" composed of a piezoresistive cantilever and accompanying electronics. The piezosensor was calibrated before use with an absolute force standard, the NIST electrostatic force balance (EFB). In this way, the piezosensor acts as a force transfer standard traceable to the International System of Units. Seven single-crystal silicon cantilevers with rectangular geometries and nominal spring constants from 0.2 to 40 Nm were measured with the piezosensor method. The values obtained for the spring constant were compared to measurements by four other techniques: the thermal noise method, the Sader method, force loading by a calibrated nanoindentation load cell, and direct calibration by force loading with the EFB. Results from different methods for the same cantilever were generally in agreement, but differed by up to 300% from nominal values. When used properly, the piezosensor approach provides spring-constant values that are accurate to +/-10% or better. Methods such as this will improve the ability to extract quantitative information from AFM methods. 相似文献
15.
We describe a new calibration method for lateral contact stiffness using modulated lateral force microscopy, a technique that offers some advantages with respect to the more classical friction force microscopy currently used for characterizing the friction properties of materials. The calibration method is based on the study of the lateral contact stiffness versus applied load and on the use of elasticity contact theories to determine by fit the calibration coefficient, allowing the scaling of experimental data. The method is tested by measuring the friction coefficient and shear strength of silicon and mica samples, respectively, and compared with results from the literature. This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
16.
M. H. Korayem A. Alipour D. Younesian 《Journal of Mechanical Science and Technology》2018,32(9):4135-4144
In this paper, vibration suppression of a micro-beam covered by a piezoelectric layer is studied. The micro-beam is modeled with the specific attention to its application in AFM. The AFM micro-beam is a cantilever one which is stimulated close to its natural frequency by applying a harmonic voltage to the piezoelectric layer. The beam is an Euler-Bernoulli beam which abbeys Kelvin-Voigt model. Using such model supplies the comparison between elastic and viscoelastic beams; and one of the most important properties of viscoelastic materials, damping effect can readily be investigated. The pump provides an axial load with the result that it suppresses the vibrations. First, the vibration equations are extracted using Lagrangian and extended Hamiltonian method in vertical, longitudinal, as well as torsional directions and are discretized by exploiting the Galerkin mode summation approach. The discretized time-domain equations are solved by the aid of the Runge-Kutta method. The viscoelastic beam is compared with the elastic one, and the effects of damping ratio on vibration responses are presented. Additionally, the effects of micro-pump load, excitation voltage, and initial twist angle are investigated on the amplitude of vibration and natural frequency of system. It is observed that viscoelasticity of beam and axial load of the pump reduce vibrations and provide uniform time-domain responses without beatings. 相似文献
17.
Xie H Vitard J Haliyo S Régnier S Boukallel M 《The Review of scientific instruments》2008,79(3):033708
We present here a method to calibrate the lateral force in the atomic force microscope. This method makes use of an accurately calibrated force sensor composed of a tipless piezoresistive cantilever and corresponding signal amplifying and processing electronics. Two ways of force loading with different loading points were compared by scanning the top and side edges of the piezoresistive cantilever. Conversion factors between the lateral force and photodiode signal using three types of atomic force microscope cantilevers with rectangular geometries (normal spring constants from 0.092 to 1.24 N/m and lateral stiffness from 10.34 to 101.06 N/m) were measured in experiments using the proposed method. When used properly, this method calibrates the conversion factors that are accurate to +/-12.4% or better. This standard has less error than the commonly used method based on the cantilever's beam mechanics. Methods such of this allow accurate and direct conversion between lateral forces and photodiode signals without any knowledge of the cantilevers and the laser measuring system. 相似文献
18.
Metallic nanoparticles have been produced on vitreous carbon substrates by means of thermal evaporation. From pictures of the particles, made by a high-resolution scanning electron microscope (HRSEM), a semispherical shape is suggested due to the total mass of deposited material. Atomic force microscopy (AFM) has been applied to this sample in order to get direct topographic information. The AFM has been operated with normal and super tips, the latter having a smaller cone angle and radius, thus following more precisely the contours of an object. Simultaneously lateral-force microscopic (LFM) images have been recorded. Major differences between the contents of HRSEM- and AFM-images are considered, emphasizing the important influence of the tips' geometry. Both the AFM and LFM line scans have been compared with and have qualitatively agreed with those calculated under simplifying assumptions. 相似文献
19.
Atomic force microscopy (AFM) and lateral force microscopy (LFM) were used to investigate the morphologic and surface changes associated with various surface modifications to human hair. These included extraction with a series of solvents, bleaching, and treatment with a cationic copolymer. The study assessed the ability of these techniques to distinguish the changes in surface properties, including morphology and friction coefficient, as manifested in changes brought about by the indicated surface modifications. While topographic morphology can easily be investigated with contact AFM. LFM offers an additional tool for probing the surface distribution of oils and waxes. The removal of surface lipids from the fiber surface was accomplished using soxhlet extraction with t-butanol and n-hexane, while the free internal lipids (within the fiber structure) were removed by extraction with a mixture of chloroform and methanol (70:30, v/v). In addition, the surface of hair was modified with the cationic polymer, co(vinyl pyrrolidone-methacrylamidopropyl trimethylammonium chloride [PVP/MAPTAC]), and its distribution on the surface was monitored. Ambient AFM and LFM studies of surface modified and native fibers clearly indicate that when investigated as a function of tip loading force, the different modifications result in changes of the friction coefficient, which increase in this order: native, bleached, solvent extracted, and polymer-treated hair. Friction images show surface variations that are interpreted as areas of varying lipid film coverage. In addition, topographic images of the fibers show the presence of small pores, which become increasingly prevalent upon solvent extraction. 相似文献
20.
A simple quantitative measurement procedure of in-plane cantilever torsion for calibrating lateral piezoresponse force microscopy is presented. This technique enables one to determine the corresponding lateral inverse optical lever sensitivity (LIOLS) of the cantilever on the given sample. Piezoelectric coefficient, d(31) of BaTiO(3) single crystal (-81.62 ± 40.22 pm/V) which was calculated using the estimated LIOLS was in good agreement with the reported value in literature. 相似文献