首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to identify new cathode compositions for the high temperature solid oxide fuel cell, we have investigated the effect of the trivalent cations Al and Ga at the Mn site of the well-studied cathode composition La0.84Sr0.16MnO3. All the compositions have been prepared by the low temperature citrate-nitrate auto-ignition process and sintered within the temperature range of 1150-1350 °C for 4 h. In order to understand the compatibility of the prepared samples as alternative cathode materials, we compared their electrical conductivity and thermal expansion coefficient with those of La0.84Sr0.16MnO3 and yttria-stabilized zirconia. A 10 mol% Al doped La0.84Sr0.16MnO3 composition exhibited a conductivity of around 122 S cm−1 at 950 °C and a thermal expansion coefficient of 11.04 × 10−6 K with a minimum reactivity towards yttria-stabilized zirconia. Though the conductivity of the new composition is lower than that of La0.84Sr0.16MnO3 (169 S cm−1 at 950 °C), it is still high enough for use as a cathode material.  相似文献   

2.
A novel preparation route to the perovskite materials Ca0.3La0.7CrO3, Sr0.16La0.84CrO3, and Sr0.2La0.8MnO3 is described. The method produces the phase pure perovskite phases after calcination at 700°C for 2 hours. The powders produced are unagglomerated, and consist of hollow spherical particles 0.15 m in diameter. EDX has shown that the careful control of reaction conditions is vital to control the phase composition, and that small changes in stoichiometry result in the production of unsinterable powder.  相似文献   

3.
Strontium-doped lanthanum manganite of composition La0.74Sr0.26MnO3 is synthesized via carbonate coprecipitation from aqueous nitrate solutions. Its 1170-K electrical conductivity is 197 S/cm, which far exceeds the conductivity of the material of the same composition and close in porosity but prepared by the conventional ceramic route. The proposed synthesis procedure makes it possible to prepare La0.74Sr0.26MnO3 with a relative density of 66% (needed for fuel-cell cathodes) and 1170-K conductivity as high as 125 S/cm. La0.74Sr0.26MnO3 has a rhombohedral structure (sp. gr. R c) with lattice parametersa = 0.55000 nm and c = 1.33491 nm.  相似文献   

4.
Lanthanum strontium manganite (La1 ? xSrxMnO3, LSM) has been studied as a promising material for application as a cathode in solid oxide fuel cells. In the present work La0.7Sr0.3MnO3 nanopowders were synthesized by three different methods (combustion, citrate and solid-state) and characterized by thermal analysis, X-ray diffraction, physical adsorption of N2 and scanning electron microscopy. All powders exhibited single LSM phase formation with crystallite sizes in the range of 12–20 nm. Nanopowders were sintered at 1100 °C to produce porous pellets. The porosity, particle size and microstructure of LSM sintered bodies are strongly dependent on the preparation methodology. The samples synthesized by combustion and citrate methods presented smaller particle sizes and higher porosity after sintering than that derived from solid-state synthesis. However, the electrical conductivity, measured by two-probe technique, was very similar for all three samples.  相似文献   

5.
(La0.8Sr0.2)0.95MnO3 and (La0.8Sr0.2)0.95MnO3/YSZ gel films were deposited by a spin-coating technique on scandium-doped zirconia (ScSZ) substrate using the precursor solution prepared from La(Oi-C3H7)3, Sr(Oi-C3H7)2, Mn(Oi-C3H7)2 and 2-methoxyethanol. By heat-treating the gel films, the membrane reactors, (La0.8Sr0.2)0.95MnO3|ScSZ|Pt and (La0.8Sr0.2)0.95MnO3/YSZ|ScSZ|Pt were fabricated. It was found that the pre-firing temperature affected the microstructure evolution of (La0.8Sr0.2)0.95MnO3 and (La0.8Sr0.2)0.95MnO3/YSZ thin films. Pre-firing at low temperature resulted in high porosity and large grain size of the thin films. NO decomposition characteristics of the obtained membrane reactors were investigated at 600 °C in reactant gas, 1000 ppm of NO and 2% of oxygen. By applying a direct current to the membrane reactors, NO can be decomposed at the (La0.8Sr0.2)0.95MnO3 and (La0.8Sr0.2)0.95MnO3/YSZ composite cathode. By incorporating YSZ into (La0.8Sr0.2)0.95MnO3, the required consuming power to decompose NO could be reduced.  相似文献   

6.
We studied the kinetics of La0.84Sr0.16CrO3 formation from a precursor consisting of La and Sr chromium oxides and carbonates made by spray roasting. Pure LaCrO3 becomes cubic at temperatures exceeding 1900 °C. Strontium doping lowers the transition temperature, for example, that of La0.84Sr0.16CrO3 is 1700 °C. This transition is gradual and occurs over a 700 °C range upon heating and cooling. Low temperature (LT) air calcination (450 °C) of the precursor yields a mixture of LaCrO4 and SrCrO4, which following 20 h of heating at 1440 °C produces a homogeneous powder. Secondary electron images of this precursor reveal dense spheres with 95% of the theoretical density of La0.84Sr0.16CrO3. High temperature (HT) calcination (800 °C) yields a mixture of LaCrO3 and SrCrO4, which following 40 h of heating at 1500 °C produces a uniform product. The LT and HT calcination causes oxygen loss.  相似文献   

7.
Ultrafine La0.7Sr0.3MnO3 powders were prepared via homogenization in chelate solutions, followed by microwave dehydration, using polynuclear heterometallic diethylenetriaminepentaacetates as precursors. To assess the effect of the dehydration procedure on the phase composition and grain size of La0.7Sr0.3MnO3 ceramics, three routes were tested: concentration of chelate solutions by evaporation until the formation of a glassy precursor, microwave dehydration of chelate solutions, and a combination of gelation and microwave dehydration. Phase-pure La0.7Sr0.3MnO3 with a crystallite size of 30–40 nm (as determined by transmission electron microscopy) could be obtained via microwave dehydration of heterobimetallic precursor solutions, followed by calcination at a temperature as low as 800°C.  相似文献   

8.
In our research it has been firstly found that BaTiO3 materials doped with BaBiO3 only show negative temperature coefficient effect over a wide temperature range. Major phases present in the sintered bodies are BaTiO3 compounds with a perovskite structure and BaBiO3 compounds with a monoclinic structure. Also, at a given BaTiO3 and BaBiO3 content, the influence of La2O3 content on the microstructure and electrical properties has been investigated. The mean grain size of samples decreases with an increase in La2O3 content. However the mean grain size remains unchanged with a further increase in La2O3 content when the La2O3 content in material is more than 0.20. As the amount of La2O3 in BaTiO3-based ceramics thermistors increases, the resistivity decreases to a minimum value and then slowly increases again.  相似文献   

9.
The electrical conductivity of yttrium-doped SrTiO3 with transition metals added as acceptor dopants (V, Mn, Fe, Co, Ni, Cu, Zn, Mo, Mg, Zr, Al, or Ga) was measured by the dc four-probe method at 600-900°C in reducing atmospheres. The replacement of 5 mol% titanium by acceptors leads to a decrease of conductivity of Sr1−1.5xYxTiO3−δ. The degree of the decrease depends strongly on the type of dopant. Of the 5 mol% acceptor-doped compositions, the system Sr0.85Y0.10Ti0.95Co0.05O3−δ had the highest conductivity of 45 S/cm at 800°C and oxygen partial pressure of 10−19 atm. The oxidation kinetics of yttrium-doped SrTiO3 was significantly retarded by the addition of cobalt or manganese dopants. The ionic conductivity of SrTiO3 doped with 5 mol% acceptors at Ti-sites was estimated from the total conductivity to lie in the vicinity of 10−4 S/cm, depending on oxygen partial pressure and temperature.  相似文献   

10.
Self-Propagating High-temperature Synthesis (SHS) was used to producecomplex oxides (La1–x Sr x MnO3 with x = 0, 0.1 and 0.2), which are used as the cathode in solid oxide fuel cells (SOFCs). Thermodynamic predications and experiments show that La1–x Sr x MnO3 can be prepared via SHS under moderate conditions from a mixture of La2O3 + SrO2 + Mn, using either gaseous oxygen or solid NaClO4 as the oxidant. Partial melting at the high combustion temperature increased product homogeneity. The electrical conductivity of the product was 180 S·cm–1 at 1000°C in air, matching that of sample made by other synthesis processes. SHS enables a more economical production of La1–x Sr x MnO3 than existing commercial processes.  相似文献   

11.
Secondary phases and grain boundaries in LaCoO3 and La0.7Sr0.3CoO3−δ ceramics have been studied by transmission electron microscopy. Both materials contained small amounts of grains of a secondary phase; the face centered cubic spinel structure Co3O4, located at triple junctions. These grains were agglomerates of several smaller grains. High resolution electron microscopy combined with annular dark field scanning transmission electron microscopy and electron energy loss spectroscopy were used to analyze the grain boundaries. In LaCoO3, the grain boundaries were sharp with stable compositions of La, Co and O across the boundaries. In La0.7Sr0.3CoO3−δ, a 1–2 nm thick intergranular layer between the grains was observed. This layer was rich in O and Co and deficient in Sr and La, compared to the nominal composition of the material.  相似文献   

12.
A mild hydrothermal method has been adopted to prepare La0.5Sr0.5MnO3 and La0.5Ba0.5MnO3, which is of interest for a number of possible applications. The results from X-ray diffraction (XRD) indicate that in the present work the temperature of 200 and 240 °C are sufficient to prepare phase pure La0.5Sr0.5MnO3 and La0.5Ba0.5MnO3 crystals. At 200 °C, La0.5Sr0.5MnO3 nanowires are obtained. The average width and length of the nanowires are 40 nm and 4 μm, respectively. At 240 °C, La0.5Ba0.5MnO3 powders obtained have a cubic structure with the average size of 3-5 μm.  相似文献   

13.
The tetragonal-to-monoclinic phase transformation of yttria partially stabilized zirconia by low temperature annealing in air was investigated in the temperature range 100 to 650° C using a sintered body of zirconia containing 2 to 4 mol% Y2O3. The amount of monoclinic phase formed was maximum at about 200° C. Both the decrease in grain size and increase in the yttria concentration were effective in decreasing the critical temperature below which the monoclinic phase was formed. The relationship between the critical temperature (T c) and the grain size was experimentally determined.  相似文献   

14.
The electrical conductivity and thermoelectric power for solid solutions of La2Cu0.9M0.1O4 (M = Mn, Fe, Co and Ni) prepared by polymeric precursor synthesis were measured between 300 and 1173 K to test its suitability as a thermoelectric material. Fe-, Mn-and Ni-doped compositions exhibited a metal-semiconductor transition with decreasing temperature, whereas Co doping showed a semiconducting behaviour in the entire temperature range of measurement. With Cu-sites doping in La2CuO4, power factors were not enhanced.  相似文献   

15.
This work shows the stepwise improvement of air electrodes by the right combination of catalysts. In all electrodes carbon nanotubes serve as carbon support. The electrodes are produced by ultrasonic mixing of the carbon nanotubes and the catalysts. Their catalytic activity towards oxygen reduction in alkaline solution is evaluated by polarisation curves and electrochemical impedance spectroscopy. In a first step La1?xSrxMnO3 perovskites are investigated, as well as La0.65Sr0.35MnO3 and La0.6Sr0.4CoO3 are compared. It is found that La0.65Sr0.35MnO3 and La0.6Sr0.4CoO3 have a positive impact on different parts of the current–potential curve. In a second step the influence of small amounts of platinum as an additional catalyst besides the perovskite is analyzed with the result that platinum lowers significantly the activation polarisation. Finally, the optimum composition of the electrode is found by using the synergetic effect of platinum, La0.65Sr0.35MnO3 and La0.6Sr0.4CoO3.  相似文献   

16.
In the present work, it was found that for La0.4Sr0.6MnO3, the dc resistance decreases with increasing temperature, from 77 to 280 K. Different from the case of metallic La0.65Sr0.35MnO3, the ac impedance of the semiconducting La0.4Sr0.6MnO3 at room temperature decreases with increasing frequency, from 100 kHz to 12 MHz. The magnetoimpedance effect was observed in La0.4Sr0.6MnO3 at room temperature. The value of impedance ratio (Z(0)−Z(H))/Z(0) at H=0.8 kOe reaches 5% at a frequency of 500 kHz.  相似文献   

17.
The (La, Sr) (Cr, Mn)O3 system was investigated in an effort to develop an interconnect and cathode materials for solid oxide fuel cells. Sintering studies were done in air at temperatures below 1500°C. Significant improvements in densification were observed with substitution of 50 mol% Mn for chromium and a density of 95% theoretical was achieved with the substitution of 70 mol% Mn for chromium in the La(Cr, Mn)O3 system. Electrical conductivity (d.c.) measurements were made as a function of temperature and oxygen activity. At 1000°C and 1 atm oxygen, the electrical conductivity ranged from 2.2–20 S cm–1 for LaCr0.8Mn0.4O3 and La0.9Sr0.1Cr0.2Mn0.8O3, respectively. All of the compositions showed similar dependence of electrical conductivity on the oxygen activity. Dependence was small at high oxygen activities; as the oxygen activity decreased, a break in electrical conductivity at 10–12 atm and 1000°C was observed, and then the electrical conductivity decreased asP O2 1/4 . Sintering and electrical conductivity studies indicate that La0.9Sr0.1Cr0.2Mn0.8O3 appears to be a candidate for solid oxide fuel cell applications.  相似文献   

18.
Perovskites are important materials in a number of important technological applications, including solid oxide fuel cells, catalysis, and giant magneto-resistance materials. For many of these purposes, a mixture of B-cations can be used to tune the desired properties, e.g., oxygen reduction, ionic conductivity. For a solid oxide fuel cell, two particular ceramic components are of critical importance and have been extensively studied, the cathode (La0.8Sr0.2)MnO3−x and the interconnect material (La0.8Sr0.2)CrO3. In this study, we examined the mixed B-cation perovskites (La0.8Sr0.2)(M0.9Ni0.1)O3 (M = Mn, Cr). All materials were synthesized using the glycine-nitrate method, followed by air annealing. The structures were determined using powder neutron diffraction methods. Refinement of the data showed that even at this low concentration, the compounds have monoclinic symmetry (P21/n) and that the nickel had a strong preference for the smaller of the two octahedral sites. This small amount of nickel substituted on the B-site resulted in a symmetry reduction when compared to the unsubstituted (LaSr)MnO3 or (LaSr)CrO3 materials. Although this structural type has been seen previously in heavily substituted perovskites, these materials show that even at this low level of substitution a segregation of the metals in a manner similar to the double perovskites A2BB′O6−x can be detected. This may have implications involving material stresses on cycling that may result as the temperature is raised or lowered through this crystallographic transition.  相似文献   

19.
Analytical electron microscopy has been used to study the precipitation reactions in sintered samples of 9 mol% La2O3-Y2O3 samples upquenched from the single phase cubic region into the cubic and hexagonal phase field. Samples annealed just inside the two-phase cubic-cubic and hexagonal solvus exhibited predominantly grain boundary precipitation. Small La2O3 rich second phases formed within the first ten minutes and developed into strained, facetted precipitates after 300 min. Intergranular and intragranular precipitation occurred in samples annealed further into the two-phase field. Strained, lathlike La2O3-rich monoclinic precipitates, exhibiting a preferrred orientation in the matrix, appeared as the dominant morphology for long times at temperature. Chemical microanalyses of the strained structures obtained in samples annealed for 300 min revealed La2O3 matrix concentrations in agreement with phase diagram predictions. However, the La2O3 concentrations in the second-phase precipitates were found to be far in excess of the cubic and hexagonal-hexagonal solvus. This discrepancy is believed to arise from a re-equilibration of the second phase in the cubic and monoclinic phase field during quenching.  相似文献   

20.
The perovskite powders Ca0.3La0.7CrO3 and Sr0.16La0.84CrO3 have been prepared using hydrothermal processing. The solid solutions were not formed directly in the autoclave, but the hydrothermally produced powders required calcination at a greatly reduced temperature to form the perovskite phase, reducing the tendency to produce hard agglomerates. Pellets with densities in excess of 95% TD were produced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号