首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The evolution of elastic properties and structure upon the change of CaO/P2O5 ratio in SiO2–CaO–Na2O–P2O5 glasses (45S5-derived and 55S4-derived) at ambient conditions has been studied by using both Brillouin and Raman spectroscopy coupled with X-ray diffraction. Under the same SiO2/Na2O ratio, it is found that a decrease in CaO/P2O5 molar ratio has caused a more-polymerized silicate network via a net consumption of Q0, Q1, and Q2 species yet enriching in Q3 and Q4 species. Brillouin experiments revealed that all the bulk, shear and Young’s moduli of the glasses studied increases with the increase of CaO/P2O5 molar ratio. The unexpected variation trend in shear modulus can be correlated to the contribution from cohesion, the less-polymerized phosphate Q species, and density. Compared to the 45S5-derived, the more-polymerized 55S4-deived glass has a lower bulk but slightly higher shear modulus at the given CaO/P2O5 ratio.  相似文献   

3.
4.
The structural role of Gallium (Ga) is investigated when substituted for Zinc (Zn) in a 0.42SiO2–0.40–xZnO–0.10Na2O–0.08CaO glass series, (where x = 0.08). Each starting material was amorphous, and the network connectivity (NC) was calculated assuming Ga acts as both a network modifier (1.23), and also as a network former. Assuming a network forming role for Ga the NC increased with increasing Ga concentration throughout the glass series (Control 1.23, TGa-1 2.32 and TGa-2 3.00). X-ray photoelectron spectroscopy confirmed both composition and correlated NC predictions. Raman spectroscopy was employed to investigate Q-structure and found that a shift in wavenumbers occurred as the Ga concentration increased through the glass series, from 933, 951 to 960 cm?1. Magic angle spinning nuclear magnetic resonance determined a chemical shift from ?73, ?75 to ?77 ppm as the Ga concentration increased, supporting Raman data. These results suggest that Ga acts predominantly as a network former in this particular Zn-silicate system.  相似文献   

5.
The partial substitution of MgO for CaO in the ternary SiO2–CaO–P2O5 glass system was conducted by the sol–gel method and a comparison of the textural and structural properties was reported. The textural properties (specific surface area and pore size distribution) were obtained by N2-adsorption measurement and the glasses structure was elucidated by Fourier transform infrared spectroscopy. It is observed that, in general, all synthesized glasses show high specific surface area and present porous nature in mesopore region. The presence of MgO in glass composition has little influence on its textural properties, however, with increasing MgO concentration the frequency of Si–O(s,asym) group shifts towards lower energy and the absorbance intensity ratio of Si–O–NBO(Q3)/Si–O–Si(s,sym)(Q4) declines, indicating the structure modification of MgO in glass composition.  相似文献   

6.
7.
(1 ? y)[0.5ZnNb2O6–0.5Zn3Nb2O8]–yZnTa2O6 with y = 0.91 (ZNT) ceramic have been prepared by conventional solid state ceramic route. The effect of glass additives on the microstructure, densification, and microwave dielectric properties of the ZNT ceramic for low temperature co-fired ceramic applications was investigated. Different weight percentages of quenched glass such as ZnO–B2O3–SiO2, BaO–B2O3–SiO2, LiO–B2O3–SiO2 and MgO–B2O3–SiO2 were added to ZNT powder. The crystal structure of the ceramic–glass composites was studied by X-ray diffraction and microstructure by scanning electron microscopy. The microwave dielectric properties such as relative permittivity (εr), quality factor (Quxf) and co-efficient of temperature variation of resonant frequency (τf) of the ceramics have been measured in the frequency range 4–6 GHz. The 5 wt% ZnO–B2O3–SiO2 added ZNT ceramic sintered at 900 °C showed: εr = 28.1, Quxf = 32820 GHz (at 4.92 GHz), and τf = ?7.7 ppm/oC respectively.  相似文献   

8.
Osteoconductive bioglasses, free of K(2)O and Al(2)O(3) and with content of Na(2)O lower than 10?mol%, were designed based on the ratio (SiO(2)?+?MgO)/(P(2)O(5)?+?CaO?+?Na(2)O) in the system Na(2)O-CaO-MgO-P(2)O(5)-SiO(2). The developed glasses have shown a strong potential for the formation of hydroxycarbonated apatite (HCA) in vitro. The particles of HCA aggregates tend to be of finer size with increasing the ratio of (SiO(2)?+?MgO)/(CaO?+?P(2)O(5)?+?Na(2)O) in the glass chemical composition indicating significant bioactivity. Critical size bone defects created in the femurs of albino adult female rats, and grafted with the glass particles for 12?weeks post implantation, were completely healed by filling with mineralized bone matrix without infection showing a strong potential for new bone formation in vivo. Osteoblasts and osteocytes were observed close to the surface of the granular implants with active areas of bone deposition, resorption and remodelling. The bioglass with lowest (SiO(2)?+?MgO)/(CaO?+?P(2)O(5)?+?Na(2)O) ratio has shown the highest bioactivity while the bioglass with the highest (SiO(2)?+?MgO)/(CaO?+?P(2)O(5)?+?Na(2)O) has shown the lowest bioactivity. The newly formed bone in vivo has shown a similar structure to that of the original bone as indicated by the histology and microstructural results. In addition, Ca/P molar ratio of the newly formed bone was found to be (~1.67), which is similar to that of the original bone.  相似文献   

9.
SiO2–CaO–Na2O–P2O5–ZrO2 based bioactive glasses with different compositions of SiO2 and yttrium stabilized ZrO2 were prepared by the conventional melt quenching technique. The effects on the chemical–mechanical properties of bioactive glasses due to the addition of ZrO2 by replacing SiO2 were investigated. Microstructure and phase behavior were studied by scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction analysis. Compressive strength, porosity, Vickers hardness, and Young’s modulus were measured as mechanical properties. Bioactivity and cell viability were investigated by immersion in simulated body fluid and MTT assay analysis. Osteosarcoma cell proliferation on the specimen surfaces was examined by confocal laser scanning microscopy. The results showed that replacing SiO2 with ZrO2 helps the bioactive glass to be completely vitrified at comparatively lower sintering temperature than conventional Bioglass®. The mechanical properties were also improved without compromising biocompatibility. Bioactive glass containing 10 wt% ZrO2 and 35 wt% SiO2 showed compressive strength of 399.71 MPa, Young's modulus of 22.3 GPa, Vicker’s hardness of 502.54 HV, and porosity of 26 vol%.  相似文献   

10.
Bioactivity and magnetic properties were investigated in glass and glass ceramics based on the SiO2–Na2O–Fe2O3–CaO–P2O5–B2O3 system to find their suitability as thermoseed for hyperthermia treatment of cancer. The effect of change in compositions on bioactivity was examined in simulated body fluids. The glass ceramic samples exhibit Na3CaSi3O8 and Na3-XFeXPO4 phases. After dipping the glass ceramic samples in simulated body fluids silica hydrogel first forms, followed by an amorphous calcium phosphate layer. Magnetic and microwave resonance experiments further demonstrate the potential of these glass ceramics for possible use in hyperthermia.  相似文献   

11.
Li2O–Al2O3–SiO2 (LAS) glass–ceramics for low temperature co-fired ceramics (LTCC) application were prepared by melting method, and the effects of MgO on the sinterability, microstructure, dielectric property, thermal expansion coefficient (CTE) and mechanical character of this glass–ceramics have been studied. The X-ray diffraction images represent that the main phase is β-spodumene solid solutions. And some ZrO2 and CaMgSi2O6 phases in LAS glass–ceramics are detected. The LAS glass–ceramics without additive (MgO) sintered at 800° had the dielectric properties: dielectric constant (εr) of 5.3, dielectric loss (tanδ) of 2.97 × 10?3 at 1 MHz, CTE value of 1.06 × 10?6 K?1, bulk density of 2.17 g/cm3, and flexural strength of 73 MPa. 5.5 wt% MgO-added LAS glass–ceramic achieves densification at 800° exhibited excellent properties: low dielectric constant and loss (εr = 7.1, tanδ = 2.02 × 10?3 at 1 MHz), low CTE (2.89 × 10?6 K?1), bulk density = 2.65 g/cm3 as well as high flexural strength (145 MPa). The results indicate that the addition of MgO is helpful to improve the dielectric and mechanical properties. The formation of CaMgSi2O6 crystal phase with higher CTE leads to the increase of CTE value of LAS glass–ceramics due to the increasing MgO content, and the increase of CTE is favourable for matching with silicon (3.1 × 10?6 K?1). The prepared LAS glass–ceramics have the potential for LTCC application.  相似文献   

12.
Ti K-edge XANES (X-ray absorption near edge structure) spectroscopy has been used to study the local coordination of titanium in biocompatible and bioresorbable TiO2–CaO–Na2O–P2O5 glasses. Both conventional melt-quenched glasses of composition (TiO2) x (CaO)0.30(Na2O)(0.20−x)(P2O5)0.50, where x = 0.01, 0.03 and 0.05, and sol–gel derived (TiO2)0.25(CaO)0.25(P2O5)0.50 glass have been studied. The results show that in all the materials studied, titanium is surrounded by an octahedron of oxygen atoms. Further analysis reveals that the TiO6 site in the amorphous samples is not heavily distorted relative to that in rutile, anatase or CaSiTiO5. The spectra from the (TiO2)0.25(CaO)0.25(P2O5)0.50 sol–gel samples reveal greater distortion in the TiO6 site in the dried gel compared to the heat-treated sol–gel glass. The XANES spectra from melt-quenched glass samples soaked in distilled water for various times do not shown any evidence of degradation of the titanium site over periods of up to 14 days.  相似文献   

13.
14.
Bioactive glasses and glass–ceramics of the SiO2–CaO–P2O5 system were synthesised by means of a sol–gel method using different phosphorus precursors according to their respective rates of hydrolysis—triethylphosphate (OP(OC2H5)3), phosphoric acid (H3PO4) and a solution prepared by dissolving phosphorus oxide (P2O5) in ethanol. The resulting materials were characterised by differential scanning calorimetry and thermogravimetry, X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy and by in vitro bioactivity tests in acellular simulated body fluid. The different precursors significantly affected the main steps of the synthesis, beginning with the time required for gel formation. The most striking influence of these precursors was observed during the thermal treatments at 700–1,200 °C that were used to convert the gels into glasses and glass–ceramics. The samples exhibited very different mineralisation behaviours; especially those prepared using the phosphoric acid, which had a reduced onset temperature of crystallisation and an increased resistance to devitrification. However, all resulting materials were bioactive. The in vitro bioactivity of these materials was strongly affected by the heat treatment temperature. In general, their bioactivity decreased with increasing treatment temperature. For crystallised samples obtained above 900 °C, the bioactivity was favoured by the presence of two crystalline phases: wollastonite (CaSiO3) and tricalcium phosphate (α-Ca3(PO4)2).  相似文献   

15.
CaO–B2O3–SiO2 glass-ceramics were synthesized by sol–gel method, and the effect of Ca/Si ratio on the microstructures, electrical properties and mechanical characteristics of this ternary system was investigated. The results showed that the increase of CaO content is favorable for the crystallization of CaO–B2O3–SiO2 system and formation of the desired glass-ceramics. The bending strength of the sintered glass-ceramics increases with CaO content by increasing of crystalline phases. When the Ca/Si ratio increases, the dielectric constant (ε r) decreases and loss (tanδ) increases gradually. The thermal expansion coefficient (TEC) enhances by increasing CaO contents due to the formation of other crystal phases with large TEC value. The glass-ceramics exhibit low dielectric constant and loss (ε r < 4.7, tanδ < 5 × 10-4 at 1 MHz), high resistivity (ρ > 1012 Ω · cm), as well as excellent mechanical properties (σ ≈ 160 MPa, α ≈ 3.6 × 10−6/°C).  相似文献   

16.
This work describes a facile method to obtain highly bioactive crystalline powders of the SiO2–CaO–Na2O–P2O5 system using a simple route: solid state reaction. Success in obtaining the highly bioactive crystal phase of interest (sodium calcium silicate Na2Ca2Si3O9 containing phosphorus) involves heating the starting reactant powder mixture under an oxidizing atmosphere for 480 min in the temperature range 950–1000 °C. Despite a significant loss of phosphorus at heat treatment temperatures above 950 °C, the resulting Na2Ca2Si3O9 crystal phase is thermally stable up to 1100 °C. Longer treatment times favor the formation of a secondary phase (sodium calcium phosphate NaCaPO4), which, according to recent studies, further increases the bioactivity of a similar material. Finally, in vitro bioactivity tests in acellular simulated body fluid (SBF) of a powder containing only the Na2Ca2Si3O9 phase has shown behavior similar to that of Biosilicate® — an ~ 99.5% crystalline glass–ceramic whose outstanding characteristics of interaction with living tissue have already been reported in the literature.  相似文献   

17.
18.
Journal of Materials Science: Materials in Electronics - The effects of injecting TiO2 to a Li2O–MgO–ZnO–B2O3–SiO2 (LMZBS) microwave dielectric composite on sinterability,...  相似文献   

19.
The structure of soda-calcia-magnesia-silicate glasses doped with rare-earth fluoride (NdF3) was investigated by Fourier transform infrared spectrometer. The density and microhardness have been investigated in order to study the effect of doping NdF3 on the physical properties of the studied glasses. The results showed that the density of glasses increases with the increase in NdF3 contents. While, the increase of NdF3 contents led to decrease the microhardness values of the studied samples. The AC electrical properties of samples were measured in the frequency interval 100 Hz up to 1 MHz. The increase of NdF3 doping generally increases the conductivity and dielectric constants of the samples slightly. The obtained experimental data from samples were discussed based on the internal structure of the glass and the distribution of its constituents, connectivity and number of free charges or broken bonds.  相似文献   

20.
A series of titanium (Ti) based glasses were formulated (0.62 SiO2?C0.14 Na2O?C0.24 CaO, with 0.05?mol% TiO2 substitutions for SiO2) to develop glass/ceramic scaffolds for bone augmentation. Glasses were initially characterised using X-ray diffraction (XRD) and particle size analysis, where the starting materials were amorphous with 4.5???m particles. Hot stage microscopy and high temperature XRD were used to determine the sintering temperature (~700?°C) and any crystalline phases present in this region (Na2Ca3Si6O16, combeite and quartz). Hardness testing revealed that the Ti-free control (ScC??2.4?GPa) had a significantly lower hardness than the Ti-containing materials (Sc1 and Sc2 ~6.6?GPa). Optical microscopy determined pore sizes ranging from 544 to 955???m. X-ray microtomography calculated porosity from 87 to 93?% and surface area measurements ranging from 2.5 to 3.3?SA/mm3. Cytotoxicity testing (using mesenchymal stem cells) revealed that all materials encouraged cell proliferation, particularly the higher Ti-containing scaffolds over 24?C72?h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号