首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study we employed the sol-gel method to synthesize new CaO–P2O5–SiO2–ZnO–B2O3 bioactive glasses. Three samples with various B2O3 content (5, 10 and 15 mol %) was prepared and their bioactivity were evaluated by immersion in simulated body fluid (SBF) and the glasses were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). The experimental results revealed that with increasing the amount of boron content, a more crystalline domain can be observed in their XRD patterns and consequently the formation of hydroxyapatite (HA) increased. FTIR spectra showed that the sample containing 10 mol% of boron had the sharpest peaks attributed to the formation of hydroxyapatite. Biocompatibility of the samples was examined by MTT assay and alkaline phosphatase activity. The result ascertained that the synthesized bioactive glass had good biocompatibility and can serve as a bone substitute in bone defects.  相似文献   

2.
In this paper, we present a new series of alkali-free bioactive glasses (BG) based on FastOs® composition (38.49 SiO2 – 36.07 CaO – 19.24 MgO – 5.61 P2O5 – 0.59 CaF2, expressed in mol %), which was modified by partially replacing silicon dioxide network-former with boron trioxide network-former, utilizing calcium oxide as a charge compensator. The main objective of this study was to obtain a new family of bioactive glasses suitable for the fabrication of glass fibers. The BGs were prepared by melt quenching technique and their structural and thermal properties were determined. Glass rods were used to obtain fibers by the classic drawing technique. The bioactivity of the fibers was subsequently assessed through immersion tests in simulated body fluid (SBF) to establish their ability to form hydroxyl carbonated (HCA) apatite onto their surfaces. Glasses with moderate substitution of SiO2 with B2O3 exhibited enhanced thermal properties, allowing to significantly suppress the crystallization trend, and favoring to draw the fibers. The structure of the studied glasses was obtained by NMR spectroscopy. The structure-property correlations were established by their relationship to the configurational entropy. Smaller amounts of substitution resulted in larger entropy of the glasses. Moreover the SBF tests revealed an extensive formation of HCA, comparable to the parent FastOs®BG composition, which assures fast bonding to the bone. Thus, presented glass fibers may be considered as promising materials for wool-like bone implants or as reinforcing constituent of biopolymer matrix composites.  相似文献   

3.
Bioactive glasses in the systems CaO‐SiO2‐P2O5‐ZnO, CaO‐SiO2‐P2O5‐MgO, and CaO‐SiO2‐P2O5‐MgO‐ZnO were prepared and characterized. Bioactive glass powders were produced by the sol‐gel method. The prepared bioactive glass powders were immersed in a simulated body fluid (SBF) for periods of up to 28 days at 310 K to investigate the bioactivity of the produced samples. Inductively coupled plasma (ICP) and ultraviolet (UV) spectroscopic techniques were used to detect changes in the SBF composition. X‐Ray diffraction (XRD) was utilized to recognize and confirm the formation of a hydroxyapatite (HA) layer on the bioactive glass powders. Microstructural characterizations of the bioactive glass samples were investigated by scanning electron microscopy (SEM) techniques. Density, porosity, and surface area values of bioactive glass powders were also determined in order to characterize the textural properties of the samples. The results revealed the growth of an HA layer on the surface of the bioactive glass samples. MgO in the glass sample increases the rate of formation of an HA layer while ZnO in the glass slows it down.  相似文献   

4.
《Ceramics International》2016,42(5):5842-5857
The effect of SrO substitution for CaO in two sol–gel glasses with different chemical compositions (mol%) A2Sr: (54−x)CaO–xSrO–6P2O5–40SiO2 and S2Sr: (16−x)CaO–xSrO–4P2O5–80SiO2 (x=0, 1, 3 and 5) stabilized at 700 °C on their structure (XRD, FTIR) and bioactive properties (SBF test) was investigated. Preliminary in vitro tests using human articular chondrocytes of selected A2Sr glass were also conducted. Moreover, the subject of this study was to detect the changes on material properties after heat treatment at 1300 °C. The results show that the effect of strontium substitution on structure, bioactivity and crystallization after treatment at both the above temperatures strongly depends on CaO/SiO2 molar ratio. The presence of 3–5 mol% of strontium ions creates more expanded glass structure but does not markedly affect crystallization ability after low temperature treatment. Sintering at 1300 °C of A2 type glasses results in crystallization of pseudowollastonite, hydroxyapatite and also Sr-substituted hydroxyapatite for 3–5 mol% of SrO substitution. The increase of strontium concentration in silica-rich materials after sintering leads to appearance of calcium strontium phosphate instead of calcium phosphate. Bioactivity evaluation indicates that substitution of Sr for Ca delays calcium phosphate formation on the materials surface only in the case of silica-rich glasses treated at 700 °C. Calcium-rich glasses, after both temperature treatments, reveals high bioactivity, while crystal size of hydroxyapatite decreases with increasing Sr content. High temperature treatment of high-silica glasses inhibits their bioactivity. Preliminary in vitro tests shows Sr addition to have a positive effects on human articular chondrocytes proliferation and to inhibit cell matrix biomineralization.  相似文献   

5.
Bioactive sol-gel calcia-silica glasses can regenerate damaged or diseased bones due to their ability to stimulate bone growth. This capability is related to the formation of a hydroxyapatite layer on the glass surface, which bonds with bone, and the release of soluble silica and calcium ions in the body fluid which accelerates bone growth. The addition of silver ions imbues the glass with antibacterial properties due to the release of antibacterial Ag+ ion. The antibacterial activity is therefore closely dependent on the dissolution properties of the glasses which in turn are related to their atomic-level structure. Structural characterization of the glasses at the atomic level is therefore essential in order to investigate and control the antibacterial properties of the glass. We have used neutron diffraction to investigate the structure of silver-containing calcia-silica sol-gel bioactive glasses with different Ag2O loading (0, 2, 4, 6 mol%). The presence of the silver had little effect on the host glass structure, although some silver metal nanoparticles were present. Results agreed with previous computer simulations.  相似文献   

6.
《Ceramics International》2023,49(12):20365-20371
Different glasses with a variable composition of x Nd2O3.(46-x) B2O3.24.5 Na2O.26.5 CaO.2.6 P 2O5 (where X = 0–2.0 mol% of Nd2O3) were prepared and studied from the viewpoint of enhancing their bioactivities. All of the as-prepared glasses showed amorphous structures evidenced by the X-ray diffraction (XRD) patterns. On the other hand, XRD patterns of glasses soaked in sodium phosphate buffer solution revealed the formation of a variety of crystalline structures relevant to the formation of carbonated hydroxyapatite derivatives. According to the NMR data, the concentration of BO3 units increases at the expense of BO4 with increasing Nd2O3 content. Increasing of (BO3/BO4) molar ratio with increasing Nd2O3 plays the main role of enhancing the bioactivity of borate glasses. The percentage of BO3, BO4, and consequently N4 fraction (N4 =BO4/BO3+BO4) can simply be determined from the deconvolution process of FTIR and NMR spectra. A scanning electron microscope (SEM) and energy-dispersive x-ray (EDX) evaluation of the microstructures support the existence of crystalline HA after immersion. Both EDX and mapping of the sample after prolonged time intervals point to the homogeneity in the HA distribution of the studied sample.  相似文献   

7.
Microfibrous melt‐derived bioactive glasses based on a borate 13‐93B3 composition are showing a considerable capacity to heal chronic soft tissue wounds in humans and animals. Metal ion dopants in borate 13‐93B3 microfibers can be beneficial for healing soft tissue wounds and bone defects but their role and delivery have received little attention. In this study, the effect of selected metal ion dopants on the degradation and conversion of 13‐93B3 microfibers in simulated body fluid at 37°C was investigated. Two groups of microfibers (diameter = 0.2–3 μm) composed of 13‐93B3 glass (composition 6 Na2O, 12 K2O, 5 MgO, 20 CaO, 4 P2O5, 53 B2O3, wt%) doped with (1) CuO (0.4 wt%) + ZnO (1.0 wt%); and (2) CuO (0.4 wt%) + ZnO (1.0 wt%) + Fe2O3 (0.4 wt%) + SrO (2.0 wt%) were studied. The metal ion dopants had little effect on the degradation of the parent 13‐93B3 glass microfibers and their conversion to an amorphous calcium phosphate (ACP) product but they inhibited the crystallization of the ACP to HA. The release of Cu and Sr ions from the glass into the medium was considerably higher than Zn and Fe ions which were retained mainly in the ACP or HA product. These results are pertinent to the design of borate bioactive glasses for optimum healing of soft tissue wounds and bone.  相似文献   

8.
《Ceramics International》2022,48(9):12430-12441
Since the discovery of 1970s, bioactive glass has been a hot topic of research because of its excellent biological activity, which makes it a material that can repair and replace human bone tissue organs. In this work, the bioactive glasses in the system SiO2–P2O5–Na2O–CaO–F with different amounts of strontium oxide (SrO) and zinc oxide (ZnO) were prepared by the conventional melt quenching technology. The hydroxyapatite (HA) forming ability, ion release and antibacterial activity of these prepared glasses were investigated and the obtained results illustrated that SrO-doped samples had a better ability to form HA in modified simulated body fluid (MSBF) than ZnO-doped samples. As the immersion time of the sample in MSBF increased, the content of HA phase gradually increased. In the same immersion time, the formation ability of HA and the variation of SrO substitution amount showed a non-linear trend, which is mainly related to the influence of SrO content on the glass network structure. The results of ion concentration showed that the formation of HA was the result of the comprehensive action of various ions in the solution, especially the release rate of Si4+ ions, which had a direct impact on the formation ability of HA. The antibacterial test illustrated that the difference in antibacterial activity of bacteria solution at different sample concentrations may be related to the high pH environment and the osmotic effects caused by the non-physiological concentration of ions in the solution. The glass sample contained 4 wt% SrO showed the minimum bactericidal concentration at 64 mg/mL. The glass samples prepared in this experiment had good biological activity and antibacterial effect, making them suitable for using in dentistry and orthopedic applications, as well as providing a valuable composition reference for the preparation of bioactive glass with excellent comprehensive properties.  相似文献   

9.
Strontium-doped bioactive phosphate glasses (P-glasses) of general composition 40(P2O5)–25(CaO)–5(Na2O)–(30-x)MgO–x(SrO) (x = 0,1,5,10) were fabricated via melt-quenching technique and effects of strontium (Sr) content on P-glass properties were systematically studied, including glass structure and density, thermal properties, solubility and cytocompatibility with human mesenchymal stem cells (hMSCs). Sr-doping resulted in the weakening of glass network and a decrease in glass transition and melting temperatures. P-glasses maintained physiological pH on immersion in simulated body fluid and exhibited sustained ion release for up to ten weeks. All P-glasses tested were cytocompatible with hMSCs. Sr2+ release upregulated the genes associated with hMSC osteogenic differentiation; expression levels of early markers (RUNX2, COL 1) were proportional to the amount of Sr2+ in the P-glasses, while expression of late markers (AlP, OC) was the highest for the P-glass containing 5 mol% Sr. It was concluded that Sr-doped P-glasses promoted osteogenic differentiation of hMSCs and have considerable potential for bone tissue regeneration.  相似文献   

10.
Bioactive glasses are often considered in bone tissue engineering applications where mechanical strength is essential. As such, bioactive glass scaffolds are often sintered to improve mechanical strength. However, sintering can lead to crystallization, which reduces bioactivity and biodegradability. It has generally been considered that amorphous biomaterials exhibit better bioactivity. However, the in-vitro bioactivity and biodegradability of the sintered 58S made from initial amorphous powder and partially crystalline powder with the same chemical compositions (60SiO2-36CaO-4P2O5 (mol%)) have not been compared before.In this study, 58S bioactive glass (fully amorphous) and glass-ceramic (partially crystallized) powders were synthesized using the sol-gel process, followed by heat-treating at 600 °C for 3 h (calcination). The powders were mixed with carboxymethyl cellulose solution as a binder, shaped in a cylindrical mold, dried, and then sintered at 1100 °C for 5 h. The in-vitro bioactivity and biodegradability of the sintered samples were assessed in simulated body fluid (SBF) for times up to 28 days. The specimens were investigated before and after immersion in SBF using X-ray powder diffraction (XRD), Scanning Electron Microscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR). The In-vitro bioactivity and biodegradability rate of the sintered 58S produced from the glass ceramic powder were higher than that from fully amorphous powder. This study shows that the initial structure after calcination is important and affects the subsequent crystallization during sintering. Therefore, crystallinity and formation of hydroxyapatite after calcination are important controlling mechanisms that can increase the bioactivity and biodegradability rate of sintered 58S.  相似文献   

11.
《Ceramics International》2020,46(7):9025-9029
A series of phosphate glasses composed of (65-x)P2O5–15BaO–5Al2O3–5ZnO–10Na2O-xB2O3 (x = 0, 2, 4, 6, and 8 mol%) were successfully prepared using the melt-quenching method. The effects of the addition of boron trioxide (B2O3) on the physical, structural, and mechanical properties of the glasses were investigated. As the added content of B2O3 increased from 0 to 6 mol%, the glass exhibited increased density and transition temperature, and decreased molar volume, indicating optimization of the glass stability. Raman spectroscopy revealed that the introduction of B2O3 transformed the glass from a chain structure to a three-dimensional network structure, which enhanced the chemical stability of the glass by the cross-linking of long phosphate chains with boron ions. Regarding the mechanical properties, when the boron content was 6 mol%, the flexural strength of the glass was 41% higher than that of the undoped boron, while the Vickers hardness and Knoop hardness values increased by 20.58% and 7.05%, respectively, and the fracture toughness was slightly decreased. In general, improving the mechanical properties of phosphate glass is of great significance for increasing the applications of this glass.  相似文献   

12.
Sodium aluminophosphate glasses were evaluated for their bone repair ability. The glasses belonging to the system 45Na2O–xAl2O3‐(55‐x)P2O5, with = (3, 5, 7, 10 mol%) were prepared by a melt‐quenching method. We assessed the effect of Al2O3 content on the properties of Na2O–Al2O3–P2O5 (NAP) glasses, which were characterized by density measurements, DSC analyses, solubility, bioactivity in simulated body fluid and cytocompatibility with MG‐63 cells. To the best of our knowledge, this is the first investigation of calcium‐free Na2O–Al2O3–P2O5 system glasses as bioactive materials for bone tissue engineering.  相似文献   

13.
《Ceramics International》2022,48(6):7643-7651
In this study, the effect of replacing CaO by BaO on mechanical properties, bioactivity, and cell adhesion of SiO2–B2O3–Al2O3–P2O5–CaO–Na2O based glass was investigated. Mechanical characterization, depth-sensing nano-indentation, and surface micro-indentation techniques were employed to determine the fracture toughness (KIC). The surface was photographed after micro-indentation effect using scanning electron microscopy. In vitro responses of the compounds of tris-buffered SBF solution were studied from different points of view: (i) morphology and elemental surface analysis using field emission electron microscopy equipped with energy dispersive spectroscopy; (ii) change in bonds using Raman spectroscopy; and (iii) ICP method for detecting the change in ion chemistry of SBF solution. The cell adhesion behavior was qualitatively evaluated by examining the morphology and attachment of mouse fibroblastic cells to the surface of the glasses. The results demonstrated that with the replacement of barium oxide, the hardness of the base glass increased, while the level of fracture toughness was maintained. In addition, in vitro bioactivity of barium oxide-containing glass was reduced compared to the base glass. However, structural dissolution and formation of calcium phosphate layers on their surfaces were also confirmed. The results showed that BaO-incorporated glasses had adequate cell propagation and proliferation, hence enjoying appropriate biocompatibility for use in coating applications.  相似文献   

14.
《Ceramics International》2021,47(21):30349-30357
Mesoporous glass 58S (60SiO2, 36CaO, 4P2O5 mol.%) has excellent bioactivity, biocompatibility, and forms strong bonds with bone making it attractive for implants. Mesoporous bioactive glass 58S powder is typically consolidated through sintering in order to produce an implant with sufficient strength to withstand the in vivo loads. However, heating the glass often leads to crystallinity, which is undesirable because it can reduce bioactivity. Hence, there is a trade-off between minimising crystallinity and maximising glass strength. Even at relatively low temperatures, it has been suggested that segregation of calcium and phosphate from silica within the glass can lead to crystallization. In this work, we confirm the occurrence of low temperature segregation in bioactive glass 58S using electron microscopy with elemental mapping. We probe how segregation affects the material properties of post-sintered glasses via comparison to a glass where phase separation is prevented via addition citric acid to the parent sol.  相似文献   

15.
Two glasses from CaO-SiO2 binary system were obtained by sol-gel and melting techniques. The effect of two different glass obtaining methods was investigated using X-ray diffraction, FTIR, Raman and 29Si MAS NMR spectroscopic methods. The measurements revealed significant differences in the glasses structure. Although both glasses were fully amorphous, the gel-derived glass had a more polymerized structure compared to the melt-derived one. The studied glasses were characterized by BET analysis to provide information about specific surface area of the obtained materials. Apart from microstructural evaluation, thermal properties and in vitro bioactivity study of all glasses were conducted to demonstrate differences in performance of the samples. The formation process of hydroxycarbonate apatite (HCA) layer was investigated using inductively coupled plasma mass spectrometry (ICP-MS) and structural studies.  相似文献   

16.
Phosphate-based glasses of composition xNa2O−(45+(10−x))CaO−45P2O5 with different Na2O, CaO (= 1, 5, 10, 15, and 20 mol%), and invariable P2O5 (45 mol%) contents were prepared using the rapid melt quench technique. The obtained thermal data from differential thermal analysis revealed a decline in glass transition (Tg) and crystallization (Tc) temperatures of glasses against the compositional changes. The inclusion of Na2O at the cost of CaO in the glass network led to a reduction in its thermal stability. The thermal treatment carried out on glasses helped to derive their glass-ceramic counterparts. The amorphous and crystalline features of samples were characterized using X-ray diffraction patterns. The crystalline species that emerged out of the calcium phosphate phases confirmed the dominance of Q1 and Q2 structural distributions in the investigated glass-ceramics. The obtained scanning electron micrographs and atomic force microscopic images confirmed the surface crystallization and textural modification of the samples after thermal treatment. The N2-adsorption–desorption studies explored the reduction of porous structures due to thermal treatment on the melt-driven glass surface. The measured elastic moduli and Vicker's hardness values of the glasses showed an increase after thermal treatment, which were reduced against the inclusion of alkali content in both glass and glass-ceramics.  相似文献   

17.
Bioactive glasses (BGs) have been used for bone formation and bone repair processes in recent years. This study investigated the titanium substitution effect on 58S BGs (Ti-BGs) 60SiO2-(36 − X)CaO-4P2O5-XTiO2 (X = 0, 3, and 5 mol.%) prepared by the sol-gel technique, and the main goal was to find the optimum amount of titanium in Ti-BGs. Synthesized BGs, which were investigated after immersion in simulated body fluid (SBF), were tested by X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy. Moreover alkaline phosphate (ALP) activity, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and antibacterial studies were employed to investigate the biological properties of Ti-BGs. According to the FTIR and XRD test results, hydroxyapatite (HA) formation on Ti-BGs surfaces was confirmed. Meanwhile, the presence of 5 mol.% compared to 3 mol.% increased the HA grain distribution and their size on the Ti-BGs surface. Additionally, MTT and ALP results confirmed that the optimal amount of titanium substitution in BG was 5 mol.%. Since 5 mol.% Ti incorporated BG (BG-5) had the highest biocompatibility level, antibacterial properties, maximum cell proliferation, and ALP activity among the synthesized Ti-BGs, it is presented as the best candidate for further in vivo investigations.  相似文献   

18.
The dissolution rate of some glasses accelerates after prolonged time spent at a slow, residual dissolution rate. This phenomenon is referred to as Stage III behavior. The acceleration in glass dissolution rate linked to Stage III behavior is significant and may be the most impactful behavior to long-term performance of glass in a repository. This work is aimed at understanding the effect of glass composition on Stage III behavior to add a level of technical defensibility to glass disposal. To this end, a set of 24 glass compositions were statistically designed, where eight glass components (SiO2, B2O3, Al2O3, CaO, Na2O, SnO2, ZrO2, and Others) have been independently varied in order to study the individual effects of each glass component. These glasses have been subjected to static dissolution tests at 90°C in deionized water and then seeded with zeolite Na-P2 28 days into the testing to induce Stage III behavior. The response of the glasses to the zeolite seeds fell into four primary types: (1) no response to seeds; (2) an immediate linear sustained acceleration in the rate; (3) an immediate linear acceleration in the rate followed by a decrease; and (4) a progressive acceleration in the rate that is concurrent with the addition of the seeds. The main glass components observed to influence these behaviors were CaO, Al2O3, B2O3, and ZrO2, where (1) CaO influenced which glasses showed a Stage III response to seeds (high CaO: types 2, 3, and 4) or did not respond to seeds (low CaO: type 1), (2) Al2O3 and B2O3 influenced which glasses showed a sustainable Stage III response (high Al2O3: types 2 and 4) versus transitory response (low Al2O3 and high B2O3: type 3), and (3) ZrO2 concentration influenced whether glasses showed a linear (high ZrO2: type 2) versus progressive (low ZrO2: type 4) response to seeds.  相似文献   

19.
A series of phosphate glasses 40P2O5-(40−x)CaO-xMgO-(20−y)Na2O-yTiO2 (where 0 ≤ x ≤ 24 and y = 0 or 1) with varying MgO contents were investigated for their in vitro calcium phosphate (CaP) formation. Thermal analysis of these glass compositions was conducted and a significant decrease in glass transition temperature from 448°C to 430°C was seen with reducing MgO content from 24 to 8 mol%. Degradation studies were performed in phosphate buffered saline (PBS) at 37°C, where the 8 mol% MgO glass showed the highest mass loss of around 3.4% after 28 days of immersion. Cation release studies were conducted via ion chromatography, using ultrapure water at 37°C as the degradation medium. The highest release of Ca2+ and Na+ ions was observed with the 8 mol% MgO glass. In vitro CaP formation studies were conducted using glass discs immersed in simulated body fluid (SBF) at 37°C for up to 28 days. The amorphous phase and chemical composition of deposited CaP layers on the glass discs were confirmed via X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX) analysis, respectively. CaP layers with Ca/P ratio 0.8-1.1 were found to be deposited on the lower MgO content (8 to 2 mol%) glass surface after 28 days of SBF study.  相似文献   

20.
The influence of Nb2O5 on the structure and ionic conductivity of potassium phosphate glasses was investigated in glasses with composition xNb2O5–(100-x)[0.45K2O–0.55P2O5], x = 10–47 mol%. The Raman spectra of glasses reveal a transition from predominantly orthophosphate to predominantly niobate glass network with increasing Nb2O5 content. In the glass structure, niobium forms NbO6 octahedra which are interlinked with phosphate units for the glass containing 10 mol% Nb2O5, but for higher Nb2O5 content they become mutually interconnected via Nb-O-Nb bonds. The transport of potassium ions was found to be strongly dependent on the structural characteristics of the glass network. While the mixed niobate-phosphate glass network hinders the diffusion of potassium ions by providing traps that immobilize them and/or by blocking the conduction pathways, predominantly niobate glass network exhibits a rather facilitating effect which is evidenced in the trend of DC conductivity as well as in the features of the frequency-dependent conductivity and typical hopping lengths of potassium ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号