首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amorphous, sol–gel derived SiO2 are known to biocompatible and bioresorbable materials. Biodegradable and inert materials containing radioactive isotopes have potential application as delivery vehicles of the beta radiation to the cancer tumors inside the body. Incorporation of holmium in the sol–gel derived SiO2 could lead to the formation of a biodegradable material which could be used as carrier biomaterial for the radiation of radioactive holmium to the various cancer sites. The homogeneity of the prepared sol–gel silica holmium monoliths was investigated by Back Scattered Electron Imaging of Scanning Electron Microscope equipped with Energy Dispersive X-ray Analysis, X-ray Induced Photoelectron Spectroscopy and Nuclear Magnetic Resonance Spectroscopy. The biodegradation of the monoliths was investigated in Simulated Body Fluid and TRIS (Trizma pre-set Crystals) solution. The results show that by suitable tailoring of the sol–gel processing parameters holmium can be homogeneously incorporated in the silica matrix with a controlled biodegradation rate.  相似文献   

2.
Continuous alumina gel fibres were prepared by sol–gel method. The spinning sol was prepared by mixing aluminum nitrate, lactic acid and polyvinylpyrrolidone with a mass ratio of 10:3:1· 5. Thermogravimetry–differential scanning calorimetry (TG–DSC), Fourier transform infrared (FTIR) spectra, X-ray diffraction (XRD), and scanning electron microscopy (SEM) were used to characterize the properties of the gel and ceramic fibres. The Al2O3 fibres with a uniform diameter can be obtained by sintering gel fibres at 1200 °C.  相似文献   

3.
Monolithic aluminium titanate with well-defined macropores has been prepared through a sol–gel process accompanied by phase separation, using poly(ethylene oxide) (PEO) to induce the phase separation and formamide (FA) to control the gelation of Al2O3–TiO2 system. Appropriate amounts of PEO and formamide allow the formation of aluminium titanate xerogel with cocontinuous macroporous structure and a monolithic shape. The pore size of the resultant dried gels is in the range of 2–3 μm and the porosity is above 60%. The as-dried gel is amorphous and completely transforms into a single phase Al2TiO5 after heat-treated at 1300 °C. The macroporous structure is well maintained while the skeleton becomes smooth after heat-treatment.  相似文献   

4.
Monodisperse silica nanoparticles were prepared via miniemulsion sol–gel reaction of tetraethyl orthosilicate (TEOS). Hexadecane (HD) or hexadecyltrimethoxysilane was used as costabilizer to effectively retard the Ostwald ripening process involved in TEOS miniemulsion. The Ostwald ripening behavior was characterized by dynamic light scattering (DLS), and it was adequately described by the modified Kabal’nov equation. The miniemulsion sol–gel reaction of TEOS/HD with a volume fraction (φ c) of 0.024 at 80 °C is stable in the pH range 6–10. By contrast, gelation of reacting miniemulsions occurs at 70 and 100 min at pH 4 and 5, respectively. The weight-average silica particle size (d w) of colloidal products prepared at 80 °C and pH 7 decreases from 59 to 36 nm with low polydispersity index (PDI, in the range 1.02–1.03), determined by transmission electron microscopy, when the φ c of HD increases from 0.024 to 0.23. At constant φ c (0.024), the resultant silica nanoparticles show larger d w (83 nm) and PDI (1.35) for the TEOS/HD system at pH 10 as compared to the counterpart of pH 7. Furthermore, for the TEOS/HD system at pH 7 and low φ c (0.024), d w increases significantly with temperature being increased from 25 to 80 °C. By contrast, the effect of temperature on silica nanoparticle size becomes insignificant when a high level of HD (φ c = 0.23) is used. Zeta potential measurements and field emission scanning electron microscopy were used to characterize the surface charge density and morphology of resultant silica nanoparticles.  相似文献   

5.
Uniformly distributed nanoparticles of LiCoO2 have been synthesized through the simple sol–gel method in presence of neutral surfactant (Tween-80). The powders were characterized by X-ray diffractometry, transmission electron microscopy and electrochemical method including charge–discharge cycling performance. The powder calcined at a temperature of 900 °C for 5 h shows pure phase layered LiCoO2. The results show that the particle size is reduced in presence of surfactant as compared to normal sol–gel method. Also, the sample prepared in presence of surfactant and calcined at 900 °C for 5 h shows the highest initial discharge capacity (106 mAh g?1) with good cycling stability as compared to the sample prepared without surfactant which shows the specific discharge capacity of 50 mAh g?1.  相似文献   

6.
Eu-doped BaTiO3 thin films with a pseudo-cubic perovskite structure were successfully fabricated on magnesia substrates at low temperature by using a high-concentration sol–gel process, in which the newly developed gel-aging process on substrate was employed. Film microstructure, crystallinity, sintering properties and photoluminescence (PL) were investigated. The xerogel thin films exhibited strong PL associated with Eu3+ ions under ultraviolet excitation at room temperature; the PL was visible to naked eyes. The intensity maximum of PL was reached with doping concentration of about 8 mol%. Sintering above 600 °C caused reduction of europium, resulting in a rapid quenching of Eu3+ emission and enhancement of Eu2+ emission.  相似文献   

7.
Polyimide-based nanocomposites prepared by the in situ generation of inorganic nanoparticles (silica) through the sol–gel process were characterized by kinetics of water uptake, thermogravimetry and dynamic mechanical analysis.Silica particles turned out to possess a rather loose inner structure characterized by enhanced water diffusivities and by dynamic elasticity moduli comparable to that of the pristine, glassy PI. Thermal stability and thermomechanical properties of nanocomposites in the glassy state remained nearly the same as those of the pristine PI, while a significant reinforcement effect was observed for the rubbery PI matrix.  相似文献   

8.
Mesoporous TiO2 samples, with large specific surface area and high crystallinity, were prepared by a sol–gel method using polyethylene glycol and polyacrylamide (PAM) as composite templates and by two-step calcining process (at 500—700 °C in nitrogen and 500 °C in air). As a comparison, the sample was prepared using same composite templates by one-step calcining process (at 500 °C in air). The samples were characterised by X-ray diffraction, transmission electron microscopy, N2 adsorption–desorption, and diffuse reflectance UV-visible absorption spectra. The results showed that when the samples were fabricated using two-step calcining process, they exhibited typical mesoporous structure, large specific surface area, and high crystallinity. The properties of samples were studied. The results showed that PAM accelerates gel rate. The crystallinity and specific surface areas of samples were increased by using two-step calcining process. Compared with the sample prepared using one-step calcining process, the visible light absorption of samples synthesised by the two-step calcining process was improved.  相似文献   

9.
Nickel oxide nanoparticles have been synthesized in the presence of agarose polysaccharide by sol–gel method. The structure, morphology, optical and magnetic properties of the product was examined by X-ray diffraction, transmission electron microscopy, UV–visible spectrophotometer and superconducting quantum interference device magnetometer. The result of thermogravimetric analysis of the precursor product showed that the proper calcination temperature was 400 °C. X-ray diffraction result revealed that the obtained product was nickel oxide with face-centered cubic structure. TEM image demonstrated that the nickel oxide nanoparticles have spherical shape with size around 3 nm. Analysis of FTIR spectra confirmed the composition of product. The optical absorption band gap of the NiO nanoparticles was estimated to be 3.51 eV. Magnetic measurement showed that the nickel oxide nanoparticles exhibit superparamagnetic behavior at 300 K. Moreover, the nanoparticles show ferromagnetic interactions at 4.2 K owing to the existence of uncompensated moments on the surface of the nanoparticles.  相似文献   

10.
《Materials Letters》2003,57(24-25):3899-3903
In this paper, silica-based transparent organic–inorganic hybrid materials were prepared via the sol–gel process. Tetraethoxysilane (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) were used as the inorganic and organic precursors, respectively. The terbium complex, Tb(Tfacac)3phen (Tfacac=1,1,1-trifluoroacetylacetone, phen=1, 10-phenanthroline) was successfully doped into organically modified silicate (ormosil) matrix derived from TEOS and GPTMS, and the luminescent properties of the resultant ormosil composite phosphors [ormosil/Tb(Tfacac)3phen] were investigated compared with those of the Tb(Tfacac)3phen incorporated into SiO2 derived from TEOS (labeled as silica/Tb(Tfacac)3phen). Both kinds of the materials show the characteristic green emission of Tb3+ ion. The luminescence behavior of the resultant composite products was dependent on the matrix composition. The optimized lanthanide complex concentration in the ormosil/Tb(Tfacac)3phen was increased compared with in silica/Tb(Tfacac)3phen. Furthermore, the lifetime of Tb3+ in Tb(Tfacac)3phen, silica/Tb(Tfacac)3phen and ormosil/Tb(Tfacac)3phen follows the sequence: ormosil/Tb(Tfacac)3phen>silica/Tb(Tfacac)3phen>pure Tb(Tfacac)3phen.  相似文献   

11.
Unique ZrO2 crystals within pores were prepared by a sol–gel-hydrothermal method and characterized by XRD, TG/DTA, TEM, SEM, and N2 adsorption–desorption isotherms. Results show that the dried sol–gel was converted into monoclinic zirconia crystals after calcined above 550 °C. The crystal sizes of the zirconia single crystal were in the range of 20–70 nm. A number of irregular pores were embedded within the zirconia crystals. This unique structure was obtained due to the combination of sol–gel and hydrothermal treatments.  相似文献   

12.
In this study, preparation of SnO2 (0–30 mol% SnO2)–TiO2 dip-coated thin films on glazed porcelain substrates via sol–gel process has been investigated. The effects of SnO2 on the structural, optical, and photo-catalytic properties of applied thin films have been studied by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. Surface topography and surface chemical state of thin films were examined by atomic force microscopy and X-ray photoelectron spectroscopy. XRD patterns showed an increase in peak intensities of the rutile crystalline phase by increasing the SnO2 content. The prepared Sn doped TiO2 photo-catalyst films showed optical absorption in the visible light area exhibited excellent photo-catalytic ability for the degradation of methylene blue under visible light irradiation. Best photo-catalytic activity of Sn doped TiO2 thin films was measured in the TiO2–15 mol% SnO2 sample by the Sn4+ dopants presented substitution Ti4+ into the lattice of TiO2 increasing the surface oxygen vacancies and the surface hydroxyl groups.  相似文献   

13.
《Materials Letters》2004,58(22-23):2927-2931
Fresnoite (Ba2TiSi2O8, BTS) thin films were grown on polished Si(100) substrates by sol–gel method. The films were characterized using Fourier transform infrared spectroscopy (FTIR), Raman scattering spectroscopy, X-ray diffraction (XRD) and atom force microscopy (AFM). The results reveal that the crystallinity of fresnoite thin films increases and their structures become more compact as post-annealing temperature increases. Combined with XRD data, the strong FTIR peaks and Raman bands assigned to Ti–O and Si–O vibration indicate the formation of fresnoite phase in the films at a temperature of 750 °C. Besides, the AFM observation showed the films have a smooth surface, fine grains and dense structure.  相似文献   

14.
A simple oxalate based sol–gel process has been described to produce a highly stable anion deficient strontium ferrite for separation of oxygen from air. The method involves metal nitrates and oxalic acid precursors with ethanol and water as solvents, gel formation, digestion for 4 h, drying at 150 °C for 24 h, and finally decomposition at 800 °C in air. The resulting material (i) exhibits a single perovskite-type cubic (SrFeO3?ξ; ξ  0.13) phase with ao = 3.862 ± 0.002 Å, (ii) contains both the Fe4+ and Fe3+ species in 2.8:1 ratio, (iii) undergoes Fe4+  Fe3+ reduction upon heating at 650 °C in rare gas ambient and transition to an orthorhombic phase with a  ao√2, b  4ao, c  ao√2, which reverts back to cubic phase with oxygen uptake at elevated temperatures, and (iv) acts as filter for air with excellent oxygen permeation, typical flux density value being 2.45 ml/cm2 min at 1000 °C.  相似文献   

15.
16.
Abstract

Monolithic aluminum phosphate (AlPO4) with a macro–mesoporous structure has been successfully prepared via the sol–gel process accompanied by phase separation in the presence of poly(ethylene oxide) (PEO). Gelation of the system has been mediated by propylene oxide (PO), while PEO induces a phase separation. The dried gel is amorphous, whereas the crystalline tridymite phase precipitates upon heating above 1000 °C. Heat treatment does not spoil the macroporous morphology of the AlPO4 monoliths. Nitrogen adsorption–desorption measurements revealed that the skeletons of the dried gels possess a mesostructure with a median pore size of about 30 nm and a surface area as high as 120 m2 g?1. Hydrothermal treatment before heat treatment can increase the surface area to 282 m2 g?1.  相似文献   

17.
Preparation of nanocrystalline NiO thin films by sol–gel method and their hydrogen (H2) sensing properties were investigated. The thin films of NiO were successfully deposited on the glass and SiO2/Si substrate by a sol–gel coating method. The films were characterized for crystallinity, electrical properties, surface topography and optical properties as a function of calcination temperature and substrate material. It was found that the films produced by this method were polycrystalline and phase pure NiO. The H2 gas sensitivity of these films was studied as a function of H2 concentration and calcination temperature. The results indicated that the sol–gel derived NiO films could be used for the fabrication of H2 gas sensors to monitor low concentration of H2 in air quantitatively at low temperature range (< 200 °C).  相似文献   

18.
Abstract

Mullite fibres were prepared using aluminium carboxylates (ACs) and tetraethylorthosilicate by sol–gel process. ACs were synthesised from dissolution aluminium in a mixture of formic acid and glacial acetic acid using aluminium chloride hexahydrate as catalyst. The optimum condition for obtaining ACs is as follows: the molar ratio of aluminium, formic acid and acetic acid was 1∶3∶2·26 and aluminium chloride hexahydrate was 10 wt-%. All the Al and Si components were mixed at the molecular level and linear molecules were formed in the precursor sol. The dried gel fibres completely transformed to mullite fibres at 1200°C and the calcinated fibres had a smooth surface and uniform diameter.  相似文献   

19.
Nanocrystalline sulfated zirconia powder was prepared by a non-alkoxide sol–gel route using acidic condition (pH 1–2). The samples had superfine crystallites and pure tetragonal phase at 700 °C. Zr(acac)4 was used as zirconium precursor due to a better retention of sulfate species and H2SO4 0.5 M was used as sulfating agent. Fourier transform infrared (FT-IR) spectra have shown Zr–O–Zr and sulfate bonds. Crystal phase and crystallite size have been determined by X-ray Diffraction (XRD) analysis. Besides, the morphology of the samples has been investigated by field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). The optical properties of the samples have been analyzed using photoluminescence (PL) spectroscopy, too. All the analyses consistently have shown fairly uniform nanoparticles (calcined at 600 and 700 °C) with very small size and pure tetragonal phase with crystallite size between 5 and 10 nm.  相似文献   

20.
A polymeric sol–gel combustion method has been used to synthesize nanocrystalline hydroxyapatite (HA) powder from calcium nitrate and triethyl phosphate with the addition of NH4OH. The sol–gel combustion process generates phase-pure nanocrystalline HA powder, as characterized using Fourier transform infrared (FTIR), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Sintering of the HA powder compact at 1200°C for 2 h leads to a 93% theoretical dense ceramic body. This method offers an easy route for the preparation of phase-pure nanocrystalline HA powder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号