首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 668 毫秒
1.
《Intermetallics》2005,13(7):727-732
A nickel aluminide coating, developed on γ-TiAl alloy by electroplating a Ni film followed by a high Al activity pack cementation, has a duplex layer structure with an outer δ-Ni2Al3 layer and an inner TiAl3/TiAl2/TiNiAl2 layer. The coated γ-TiAl was oxidized in air for up to 36,000 ks (10,000 h) under thermal cycling between room temperature and 1173 K. A protective Al2O3 scale formed with little oxide exfoliation and the average oxidation amount was 37 g/m2 after the 36,000 ks oxidation. During oxidation at 1173 K the outer δ-Ni2Al3 changed to β-NiAl with voids and then to TiNiAl2, and the inner TiAl3/TiAl2/TiNiAl2 layers to TiAl2 and TiNiAl2 layers and then to TiAl2 and τ3 layers. The voids in the outer layer were formed by the phase transformation from the δ-Ni2Al3 to β-NiAl during oxidation. It was found that after the 36,000 ks oxidation the higher Al contents in the inner layers were better retained than that in the outer layer.  相似文献   

2.
Hot-dip aluminizing and interdiffusion treatment were used to develop a TiAl3-rich coating on Ti–6Al–4V alloy. Interrupted oxidation at temperatures from 600 to 900 °C and isothermal oxidation at 700 and 800 °C of the coating were conducted. The coating markedly decreases the oxidation rate in comparison with the alloy at temperatures below 800 °C during the interrupted oxidation. The oxidation kinetics follows parabolic relations at 700 and 800 °C during the isothermal oxidation. A layered structure of Al2O3/TiAl3/TiAl2/TiAl/alloy from the outside to the inside forms after oxidation at 700 °C without changing the main body of the coating.  相似文献   

3.
《Intermetallics》2005,13(7):694-703
The oxidation behavior of sulfidation processed TiAl–2 at.%X (X=Si, Mn, Ni, Ge, Y, Zr, La, and Ta) alloys was investigated at 1173 K in air for up to 630 ks under a heat-cycle condition between 1173 K and room temperature. During the sulfidation processing the TiAl–2 at.%Ta alloy formed Ta-aluminides on the TiAl3 layer, while the alloys containing Mn, Ni, Y, and Zr formed a TiAl3 (TiAl2 included) layer including a small amount of the third element, like the TiAl binary alloy. The cross-sectional microstructure of the TiAl–2 at.%Ta alloy shows the sequence: oxide scale/TiAlTa/TiAl2/alloy substrate; and the cross sections of the alloys containing Mn, Ni, Y, and Zr are: oxide scale/Ti3Al/alloy substrate. The TiAl–2 at.%Ta alloy showed some scale exfoliation at the initial stage of oxidation, but very little exfoliation after long oxidation times, whereas alloys containing other third elements such as Si and Ge showed little exfoliation at the first several cycles and then tended to exfoliate significantly, resulting in very rapid oxidation. The TiAlTa/TiAl2 layers formed by the reaction between the Ta-aluminide and TiAl3 improve the oxidation properties of the TiAl–2 at.%Ta alloy.  相似文献   

4.
A coating with a duplex structure consisting of an outer Ni2Al3 layer and an inner Fe2Al5 layer was formed on a commercial type of ferritic steel P92 using a two step process of electroless Ni/B plating followed by pack aluminising at 650 °C. Nearly 11,000 h oxidation test in air and more than 13,000 h isothermal annealing test in argon atmosphere were carried out to assess the long term oxidation resistance and thermal stability at 650 °C. The amount of oxidation was only about 0.66 mg/cm2 for the coating as compared to 10.3 mg/cm2 for the uncoated steel after nearly 11,000 h oxidation test. Inward Al diffusion took place during oxidation test, which led to the transformation of the outer Ni2Al3 layer to NiAl and increase in the Al diffusion depth. However, once the outer Ni2Al3 layer was completely transformed to NiAl, it stayed stable during the remaining period of oxidation test, providing long term oxidation resistance. Kirkendall voids formed and grew and then finally disappeared in the coating layers due to interdiffusion processes taking place at the oxidizing temperature at the interfaces between different layers of the duplex coating. No spallation was observed in the coating during the entire period of the oxidation or isothermal annealing tests.  相似文献   

5.
《Intermetallics》2007,15(4):599-606
The oxidation behavior of a Ni3Al-based superalloy IC6 coated with a duplex Re–Cr–Ni–Mo diffusion barrier layer and an Al reservoir layer was investigated in air at 1423 K for up to 1080 ks. The diffusion barrier layer was formed by electroplating Re(Ni) and Ni films on the alloy, followed by Cr pack cementation at 1573 K, and as a result, forms a continuous inner Re–Cr–Ni–Mo diffusion barrier layer and an outer Ni(Cr,Mo,Al) layer. Then a Ni film was electroplated on the Ni(Cr,Mo,Al) layer, followed by Al-pack cementation at 1273 K for 18 ks, to form an Al reservoir layer with a duplex Ni2Al3 and γ-Ni(Cr,Mo,Al) layers. After oxidation at 1423 K in air for 1080 ks, the Al reservoir layer changed to a γ-Ni–4Cr–5Mo–12Al (all in at%) layer, on which a protective α-Al2O3 scale formed. The Re–Cr(Mo)–Ni layer was stable and effectively retarded the interdiffusion between the Al reservoir layer and the alloy, as a result, the depth of the microstructural change zone of the alloy was less than 15 μm. In contrast, the bare and the coated IC6 superalloy only with an Al reservoir layer were significantly oxidized, accompanied by serious spallation of oxide scales. After oxidation at 1423 K for 1080 ks, the depth of the microstructural change zone of the alloy was about 200 μm for the bare and coated alloy only with an Al reservoir layer. These results indicate that the oxidation resistance of IC6 superalloy can be effectively improved by coating with a Re–Cr–Ni–Mo diffusion barrier layer and an Al reservoir layer.  相似文献   

6.
Alloys based on intermetallic phases of a Ti–Al system are materials that, thanks to their resistance characteristics, can be widely used in automotive and aerospace applications. The main restriction for the use of Ti–Al materials is their insufficient oxidation resistance above 850 °C. Oxidation parameters might be improved by aluminide coatings based on TiAl2 and TiAl3 phases, which could induce the creation of an Al2O3 scale in the oxidation process. This type of aluminide could be deposited on the surface of TiAl alloys by various methods such as pack cementation, plasma spraying or magnetron sputtering. This article presents a new method of aluminide coating deposition on TiAl intermetallic alloys: out of pack technology. The investigated coating was deposited on turbine blades made of a Ti45Al5Nb intermetallic alloy. The surface morphology, structure, phase and chemical composition have been investigated using XRD phase analysis, SEM and EDS. The phase analysis showed that TiAl3 and TiAl2 were the main components of the deposited coating. An isothermal oxidation test of the TiAl turbine blades was conducted as well. After 1000 h of testing at 950 °C, the scale formed on the surface of the uncoated blades underwent spallation. The scale on the turbine blade with deposited aluminide coatings was very thin and no spallation was observed.  相似文献   

7.
《Intermetallics》2007,15(1):1-8
The cyclic oxidation resistance of a two-phase TiAl-based alloy was remarkably improved with the formation of composite coating by siliconization with mixed powder of 15 wt%Si + 85 wt%Al2O3. The composite coating consists of a Ti5Si3-based inner layer and an Al2O3-based outer layer. The cyclic oxidation test at 900 °C showed that increasing the siliconization temperature benefits the oxidation resistance. The higher the siliconization temperature, the stabler the Ti5Si3-based layer and the more Al2O3 concentrated in the outer layer. Usually, the oxidation curves consist of three regions, the parabolic, the linear and the quadratic. For the specimen that was siliconized at 1250 °C for 2 h, however, only the parabolic region appeared during the whole cyclic oxidation test at 900 °C up to 1000 h. The weight gain is less than 0.3 mg cm−2 after cyclic oxidation at 900 °C for 1000 h, corresponding to a parabolic oxidation rate constant, Kp  6.03 × 10−5 mg2/(cm4 h). Such a low oxidation rate is attributed to the composite layer of the specimen with a stable Ti5Si3-based layer and a dense Al2O3-based layer.  相似文献   

8.
NbSi2 monoliths were prepared by self-propagating high temperature synthesis (SHS) and hot pressing (HP) and their oxidation behavior was investigated at various temperatures (823–1123 K) in air. The combustion mode of SHS reaction was steady state combustion, and the combustion product was single-phase NbSi2. Oxidation studies show that the highest mass gain was 0.95675 kg m−2 at 1023 K. In cyclic oxidation, the oxidation rate was reduced and the mass gain was only 0.15507 kg m−2. A dense protective amorphous SiO2 scale formed at 823 K and 923 K whereas a porous multilayer SiO2 and α/β-Nb2O5 oxide scales formed at and above 1023 K and spalled off. Pest oxidation of NbSi2 monoliths was not observed in hot pressed NbSi2 monoliths.  相似文献   

9.
The Nb-Si alloys are attractive candidate for more advanced aircraft engines, however their oxidation resistances are poor. In this work, silicide coatings were prepared on the Nb-18Ti-14Si-9Al substrate, and we present the concern of this Nb-Si alloy with high Al content, and focused the modification effect of Al on NbSi2 coatings. It is found that composition of the substrate alloy have an essential effect on coatings, which is composed of (Nb,Ti)Si2 outer layer and (Nb,Ti)Si2 + (Nb,Ti)3Si5Al2 inner layer. Underneath inner layer, NbAl3 is formed and surrounded by Nb5Si3. Beyond fracture toughness test, the coating still preserved the integrity and tightly adhered to substrate, no cracks nucleated between substrate and the coating. After oxidation at 1250 °C for 50 h, the mass gain of substrate and silicide coating is 398.85 mg/cm2 and 2.34 mg/cm2 respectively. The excellent oxidation resistance of the coating is proved to benefit from modification effects of high Al in the substrate.  相似文献   

10.
A SiO2–Al2O3–glass composite coating was prepared on Ti–6Al–4V alloy by air spraying and subsequent firing. The oxidation behavior of the specimens at 800 °C and 900 °C for 100 h was studied. The thermal shock resistance of the coating was tested by heating up to 900 °C and then quenching in water. The composite coating acted as an oxygen migration barrier and exhibited good resistance against high temperature oxidation, thermal shock, and oxygen permeation on the Ti–6Al–4V alloy. Coating/alloy interfacial reaction occurred, forming a Ti5Si3/Ti3Al bilayer structure. A thin Al2O3 rich layer formed beneath the composite coating during oxidation at 900 °C.  相似文献   

11.
Wear properties of CrN/NbN superlattice coating deposited on the WC-12Co substrate was investigated while using 100Cr6 steel, SiC and Al2O3 ball as counterbodies for friction pairs. The value of friction coefficient and wear rate was lowest at ~ 0.01 and 2.6 × 10 7 mm3/Nm, respectively, when coating slides against Al2O3 ball. In contrast, friction coefficient and wear rate were increased while sliding with steel and SiC ball. The deviation in friction coefficient was described by mechanical and chemical properties of these balls. Hardness of Al2O3 and SiC ball was comparable but significant deviation in friction coefficient was observed. That is related to oxidation resistance of these balls which is high for Al2O3 compared to SiC ball as evident by Raman analysis of the wear track. However, hardness and oxidation resistance were low for steel ball which shows oxidational wear mechanism.  相似文献   

12.
Y and Al modified silicide coatings were prepared on an Nb–Ti–Si based ultrahigh temperature alloy by co-depositing Si, Al and Y at 1150 °C for up to 10 h, respectively. The deposition of Al and Si occurred in a sequential manner during the pack cementation process. At the initial stage, the element deposited was primarily Al with very little Si and an Al3(Nb,X) (X represents Ti, Cr and Hf elements) layer formed preferentially. After a short period of holding time, Si started depositing and Si–Al co-deposition took place. However, this Si–Al co-deposition period was not long. When the holding time was longer than 1 h at 1150 °C, Si deposition dominated the coating growth process. The coating growth kinetics at 1150 °C followed a parabolic law. The coating prepared at 1150 °C for 10 h had a multi-layer structure, with a thick (Nb,X)Si2 outer layer, a thin (Ti,Nb)5Si4 middle layer and an Al, Cr-rich inner layer. The coating could protect the Nb–Ti–Si based alloy from oxidation at 1250 °C in air for at least 100 h. The excellent oxidation resistance of the coating was attributed to the formation of a dense scale mainly consisted of TiO2, SiO2 and Al2O3.  相似文献   

13.
Microstructural development during high-temperature oxidation of Ti2AlC below 1300 °C involves gradual formation of an outer discontinuous TiO2 layer and an inner dense and continuous α-Al2O3 layer. After heating at 1400 °C, an outer layer of mixed TiO2 and Al2TiO5 phases and a cracked α-Al2O3 inner layer were formed. After heating to 1200 °C and cooling to room temperature, two types of planar defect were identified in surface TiO2 grains: twins with (2 0 0) twin planes, and stacking faults bounded by partial dislocations. Formation of planar defects released the thermal stresses that had generated in TiO2 grains due to thermal expansion mismatch of the phases (TiO2, α-Al2O3 and Al2TiO5) in the oxide scale. After heating to 1400 °C and cooling to room temperature, crack propagation in TiO2 grains resulted from the thermal expansion mismatch of the phases in the oxide scale, the high anisotropy of thermal expansion in Al2TiO5 and the volume changes associated with the reactions during Ti2AlC oxidation. An atomistic oxidation mechanism is proposed, in which the growth of oxide scale is caused by inward diffusion of O2? and outward diffusion of Al3+ and Ti4+. The weakly bound Al leaves the Al atom plane in the layered structure of Ti2AlC, and diffuses outward to form a protective inner α-Al2O3 layer between 1100 and 1300 °C. However, the α-Al2O3 layer becomes cracked at 1400 °C, providing channels for rapid ingress of oxygen to the body, leading to severe oxidation.  相似文献   

14.
Two kinds of Y and Al modified silicide coatings on an Nb–Ti–Si based alloy were prepared by pack cementation technique. The microstructure and oxidation behavior of both coatings were studied. Both coatings had a multiple layer structure, but the outer layers were composed of either Y- and Al-doped (Nb,X)Si2 or Y-doped (Nb,X)3Si5Al2 + (Nb,X)Si2 phases, respectively. The former coating could protect the substrate alloy from oxidation at 1250 °C for 100 h, but the latter coating could only endure for less than 20 h. The scale formation mechanisms and microstructural changes of both coatings upon oxidation have been illustrated.  相似文献   

15.
The development of robust high temperature oxidation resistant coatings for Nb–Si based alloy was evaluated for a Mo–Si–B coating system that was applied by a two step process. It is observed that the coating is composed of an outer layer of MoSi2 containing boride dispersoids and an inner layer of unreacted Mo. The mass gain of substrate and Mo–Si–B coating is 190.08 and 1.28 mg cm2 after oxidation at 1250 °C in dry air for 100 h, respectively. The good oxidation resistance of the coating is attributed to the formation of a continuous borosilicate glass coverage.  相似文献   

16.
Codeposition of Si, Al and Hf were prepared by pack cementation at 1300 °C for 10 h. The results show that the coating is composed of a thick (Nb, X)Si2 outer layer, a (Ti, Nb)5Si4 middle layer and a thin discontinuous (Cr, Al)2(Nb, Ti) inner layer. The mass gain of the coating is only 4.12 mg/cm2 after isothermal oxidation at 1250 °C for 100 h. Some “oxide pegs” form at the interface of the oxide scale and coating. The coating exhibits good cyclic oxidation resistance due to the improved adhesion between the oxide scale and coating.  相似文献   

17.
《Acta Materialia》2007,55(4):1129-1135
Confocal Raman piezo-spectroscopy was applied to the non-destructive evaluation of residual stresses as they develop in a chemical-vapor-deposited Al2O3 coating on a Si3N4 ceramic substrate. According to a selected confocal configuration of the optical probe, with its focal plane set to in-depth scan the sample, the residual stress could be measured at various depths along the thickness of both coating and substrate. The residual stresses stored in the Al2O3 coating layer were measured using both the Cr3+ fluorescence band, located at 14,400 cm−1 (R1), and the Al2O3 Raman band at 417 cm−1. When the R1 fluorescence band was used, no variation could be resolved for the residual stress along the coating depth direction; in contrast, a clear in-depth stress distribution was observed when the 417 cm−1 Raman band was used. The minimum stress magnitude was located at the coating external surface and the maximum at the coating/substrate interface. Given the high transparency of the Al2O3 coating, the residual stress field stored within the Si3N4 substrate could also be measured as a function of depth (according to the piezo-spectroscopic shift of the 206 cm−1 Raman band of Si3N4). A deconvolution procedure of confocal spectra was proposed, which is based on the knowledge of the probe response functions of both coating and substrate materials. Laser probe deconvolution enabled us to retrieve the actual in-depth stress distribution from the stress distribution experimentally observed by defocusing experiments.  相似文献   

18.
Aluminizing of bare and 3 μm-Pt-electroplated specimens has been utilised to prepare NiAl and low platinum (Ni,Pt)Al coatings. Cyclic oxidation of the coatings was investigated by exposing samples to 1 h cyclic oxidation at 1100 °C. The modified coating exhibited an external layer of NiAl-25 vol.% PtAl2 above a three-zone structure. This structure endured over the whole testing time, while the NiAl coating failed after 77 cycles. The (Ni,Pt)Al coating did not reduce the scale growth rate, but it improved scale adhesion. In addition, Pt limited the outward diffusion of Ti from substrate and hence prohibited formation of undesirable TiO2.  相似文献   

19.
To prevent carbon/carbon (C/C) composites from oxidation, a self-sealing multilayer oxidation resistant coating including a C/SiC gradient inner layer, a Si-Mo-B middle layer and a glass exterior layer was prepared by pack cementation and slurry method. Scanning electron microscopy and X-ray diffraction were used to analyze the microstructure and phase composition of the as-prepared coating. The isothermal and thermal shock oxidation resistance of the coating was also investigated. The results showed that the multilayer coating exhibited excellent oxidation resistance from room temperature to 1873 K. It could effectively protect C/C composites for 100 h at 1173 K and 150 h at 1873 K, and endure 40 thermal cycles between 1873 K and room temperature. The excellent oxidation and thermal shock resistance could be attributed to the gradient structure and the self-sealing property of the multilayer coating.  相似文献   

20.
The oxidation behavior of a martensitic stainless steel with or without glass coating was investigated at 600–800 °C. The glass coating provided effective protection for the stainless steel against high-temperature oxidation. However, it follows different protection mechanisms depending on oxidation temperature. At 800 °C, glass coating acts as a barrier for oxygen diffusion, and oxidation of the glass coated steel follows linear law. At 700 or 600 °C, glass coating induces the formation of a (Cr, Fe)2O3/glass composite interlayer, through which the diffusion of Cr3+ or Fe3+ is dramatically limited. Oxidation follows parabolic law.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号